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FORMAL OSCILLATORY DISTRIBUTIONS

ALEXANDER KARABEGOV

ABSTRACT. The formal asymptotic expansion of an oscillatory in-
tegral whose phase function has one nondegenerate critical point
is a formal distribution supported at the critical point which is ap-
plied to the amplitude. This formal distribution is called a formal
oscillatory integral (FOI). We introduce the notion of a formal os-
cillatory distribution supported at a point. We prove that a formal
distribution is given by some FOI if and only if it is an oscillatory
distribution that has a certain nondegeneracy property. We also
prove that a star product x on a Poisson manifold M is natural in
the sense of Gutt and Rawnsley if and only if the formal distribu-
tion f ® g+ (f *g)(z) is oscillatory for every x € M.

1. INTRODUCTION

According to the stationary phase method, if ¢ is a real phase func-
tion on R™ which has a nondegenerate critical point zy with zero critical
value, ¢(xy) = 0, and f is an amplitude supported near xy, there exists
an asymptotic expansion

A h A\
W (3) [er@an~ non + I+ (5) i+

as h — 0, where A, are distributions supported at xy (see [10]). The
formal distribution

(2) A:A0+VA1+V2A2+...,

where we use the formal parameter v instead of //i, is a formal os-
cillatory integral (FOI) in the terminology of [8] and [7]. It can be
defined by simple algebraic axioms expressed in terms of the jet of in-
finite order of the phase function ¢ at xy. Moreover, the full jet of ¢ at
Zo is uniquely determined by the formal distribution A. We build an
algorithm that allows to recover this jet of infinite order from A.

2010 Mathematics Subject Classification. 81Q20, 53D55.
Key words and phrases. formal oscillatory integral, oscillatory distribution, nat-
ural deformation quantization.
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2 ALEXANDER KARABEGOV

The class of FOIs introduced in [8] is more general. It includes the
asymptotic expansions of oscillatory integrals whose phase function it-
self has an asymptotic expansion in A and can be complex, as explained
in Section 5.

In this paper we answer the following question asked by Th. Voronov:
given a formal distribution, how to determine whether it is a FOI? To
this end we introduce the notion of an oscillatory distribution. It is a
formal distribution A supported at a point xo which in local coordinates
is given by the formula

A(f) =e" X f]

where X = 12X, + 12X3 + ... is a formal differential operator with
constant coefficients such that the order of the differential operator
X, is at most r for all » > 2. It turns out that this property does
not depend on the choice of local coordinates. We show that a formal
distribution is a FOI if and only if it is an oscillatory distribution that
has a certain nondegeneracy property.

In [5] Gutt and Rawnsley singled out an important class of star
products which they call natural. For each r > 1, the bidifferential
operator C,. for a natural star product is of order at most r in both
arguments (see details in Section 4). All classical star products are
natural. We will prove that a star product x on a Poisson manifold M
is natural if and only if the formal distribution

A(f®g) = (f*9)(x)

on M? supported at (x, ) is oscillatory for every .

These results belong to the general framework of formal asymptotic
Lagrangian analysis. Various semiclassical and quantum aspects of
this analysis are developed in the work on formal symplectic groupoids
by Cattaneo, Dherin, and Felder [2] and the author [6], symplectic
microgeometry by Cattaneo, Dherin, and Weinstein [3], Lagrangian
analysis by Leray [10], the theory of oscillatory modules by Tsygan
[11], and microformal analysis by Th. Voronov [12].

Acknowledgments [ am very grateful to A. Alekseev, H. Khudav-
erdian, B. Tsygan, and Th. Voronov for important discussions and for
the opportunity to present a part of this work at two conferences and
during a visit to the University of Geneva in 2019.

T=x0’

2. FACTORIZATION

In this section we prove an elementary factorization result on pronilpo-
tent Lie groups in filtered associative algebras which is the technical
backbone of this paper.
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Let A be a filtered associative unital algebra over C with descending
filtration A = Ay D A; D ... such that (), A; = {0}. We denote by
d(a) the filtration degree of a € A so that d(a) =k for a € Ay \ Aj41.
We assume that this algebra is complete with respect to the norm
la| = 274@. Then any series >, a; with a; € A such that |a;] — 0 is
convergent.

Let g C A; be a Lie algebra with respect to the commutator [a, b] =
ab — ba. Then g is pronilpotent and has a Lie group exp g C Ay whose
elements are uniquely represented as

= 1
(3) g=expy=)_ il
n=0 "
for some v € g. Then g — 1 € A; and
1
(4) 7 =log(l—(1-g)) = —Zﬁ(l—g)”-
n=1

We set g; := gN A, for i > 1. The following statement is a conse-
quence of formulas (3) and (4).

Lemma 2.1. If v € g, then (expy) — 1 € A; if and only if v € g;.

Suppose that g is a direct sum of subalgebras a and b such that
g =a; () bi, where a; ;= ClﬂAZ' and bz =D ﬂ.Ai, for all 4 > 1.

Proposition 2.1. Any element g € exp g can be uniquely factorized as
g =ab with a € expa and b € exp b.

Proof. Given g = expyy € exp g for some 7y € g; = g, we can represent
o uniquely as 79 = ag + [y for some ay € a; and 5y € by. It follows

from Lemma 2.1 that
e~ Fo — oM

for some v; € go. Then v, = a; + (B for a; € ay and By € bs.
Repeating this process, we obtain sequences {«;},{f;}, and {v;} with
Q; € Qgi, B; € by, and 7; € goi such that v; = a; + 5; and

e YiplipgThi — oY+l
We get that

g =€ =%l = greMenefioh —

It follows that g = ab, where a € expa and b € exp b are given by the
convergent infinite products

a=e"ee . and b=...ePeMef0,

The representation g = ab is unique because expaNexpb = {1}. O
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In this paper we will apply Proposition 2.1 several times in different
contexts. Each time we will reuse the same notations for a filtered
associative algebra A and a pronilpotent Lie algebra g C A;.

3. SOME CLASSES OF FORMAL DISTRIBUTIONS AND OPERATORS

Let M be a real manifold and zy be a point in M. We denote
by D(M) the algebra of differential operators on M, by D, (M) the
space of all distributions on M supported at xy, and by ¢,, the Dirac
distribution at xg (04, (f) = f(x0)). The mapping

A 050 A

from D(M) to D,, (M) is surjective.
Let v be a formal parameter. We say that a v-formal differential
operator
A=Ay +vA +... e D(M)[[V]]
is natural if the order of A, is at most r for all r > 0. If U is a coordinate
chart on M with coordinates {z'}, a natural operator A on U can be
uniquely written as

A= () (vdy) .. (v0,),
r=0

where fit-r € C°°(U)[[v]] is symmetric in i, ...,4, for each r > 0
and 0; = 0/0z"'. Throughout this paper we use Einstein summation
convention over repeated upper and lower indices.

The natural operators on M form an associative algebra. If A
and B are natural operators, then the operator v~'[A, B] is natu-
ral. Therefore, the formal differential operators of the form v—!A,
where A is natural, form a Lie algebra with respect to the commu-
tator [A, B] = AB — BA.

Definition 3.1. A formal differential operator A € D(M)[[v]] is called

oscillatory if it is represented as A = exp(v™1X), where X = 12X, +
v3 X5+ ... is a natural operator.

Definition 3.2. A formal distribution A € D, (M)[[v]] is called oscil-
latory if there exists an oscillatory operator A such that A = d,, o A.

Assume that A = Ag +vA; + ... is an oscillatory distribution on M
supported at zo and represented as A = J,, o exp(r~'X), where X =
v2Xy + 1v3X3 + ... is natural. Then Ay = d,, and A; = §,, o X. Since
X5 is a differential operator of order at most 2, there exists a unique
symmetric bilinear form 8, on T; M such that

Baldf (o), dg(x0)) = M1(fg)
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for any functions f and g on M such that f(x¢) = g(xy) = 0. The form
[ is a coordinate-free object. Let U C M be a coordinate neighbor-
hood of zy with coordinates {z'}. If Xy = a”9,0; + b'0; + ¢, then

Bua(df (z0), dg (o)) = 20" 0;£0;g)|
The form f3, is thus given by the tensor 2a% ().

T=x0"

Definition 3.3. An oscillatory distribution A is called nondegenerate
if the bilinear form By is nondegenerate.

If A is a distribution on a coordinate neighborhood U of x4 supported
at xg, there exists a unique differential operator C' with constant coef-
ficients such that A = 9,, o C. We will need the following fact.

Lemma 3.1. Any differential operator A on U can be uniquely repre-
sented as a sum A = B+C of differential operators such that 6,,0B = 0
and C has constant coefficients.

Proof. Let C be the unique differential operator with constant coeffi-
cients such that

0zp 0 C = by, 0 Al
Set B:=A—C. Then 6,jo B=0and A= B+ C. O

Any differential operator A on U can be uniquely represented in the
normal form,

N
A=A ()0, 0,
r=0

where A" (x) € C*(U) is symmetric in i1, ...,%,. Then A= B+ C,
where

B =

hE

(A (z) — A" (20)) Dy, - - . Oy

r
r

is such that d,, o B

[

0 and

N
C=> A""(20)0,...0,
r=0

has constant coefficients.

We fix a coordinate chart U and consider the algebra A := D(U)[[v]]
of formal differential operators on U equipped with the v-filtration (the
filtration degree of v is 1). Let g C A; be the Lie algebra of formal
differential operators on U of the form v~!'X, where X = 12X, +
v3X5 + ... is a natural operator. This is a pronilpotent Lie algebra
with respect to the v-filtration. A distribution A on U supported at
a point xy is oscillatory if there exists an element A € g such that
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A = 4,, oexp(A). The following proposition provides a criterion that
a given formal distribution supported at a point is oscillatory.

Proposition 3.1. Let A be a formal distribution on U supported at a
point xg. If C is the unique formal differential operator with constant
coefficients such that

A =6, 0 exp(C),

then A is oscillatory if and only if C € g.

Proof. If C' € g, then A is oscillatory. Now assume that A is oscillatory.
Let b be the Lie algebra of formal differential operators A € g such
that d,, o A = 0. Denote by ¢ the Lie algebra of the formal differential
operators with constant coefficients from g. Lemma 3.1 implies that
g=Db&®cand g, = b; B¢, for all i > 1 for the corresponding v-filtration
spaces. Notice that the algebras g and b are coordinate-free objects,
while the complementary algebra ¢ depends on the choice of coordinates
on U. Since A is oscillatory, A = §,, 0cexp(A) for some A € g. It follows
from Proposition 2.1 that there exist unique elements B € b and C' € ¢
such that et = efe®. Then d,, o exp B = 6,, and

A =6, 0exp(A) = 0y, 0 (exp(B) exp(C)) = &y, 0 exp(C).

4. NATURAL STAR PRODUCTS

Given a vector space V, we denote by V((v)) the space of formal
vectors
v=vv v o b
where r € Z and v; € V for all ¢ > r.
Let M be a Poisson manifold with Poisson bracket {-,-}. A star
product x on M is an associative product on C*°(M)((v)) given by the
formula

(5) fxg="Tg+> v'Cif.9),
r=1

where C, are bidifferential operators on M for » > 1 and Cy(f,g) —
Ci(g, f) = {f, g} (see [1]). We assume that the unit constant 1 is the
unity for the star product, fx1 = f = 1« f for all f. Given f,g €
C>®(M)((v)), denote by Ly the operator of left star multiplication by
f and by R, the operator of right star multiplication by g so that

Lig=[fxg=Ryf.
The associativity of the star product x is equivalent to the condition
that [Ly, R,] = 0 for any f,¢g. The mapping f — Ly is an injective
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homomorphism from the star algebra (C*(M)((v)),*) to the algebra
D(M)((v)) of formal differential operators on M. It has a left inverse
mapping A — Al (which is not a homomorphism on the whole algebra
D(M)((1)).

Lfl—>Lf1:f*1:f.

Gutt and Rawnsley introduced in [5] an important notion of a natural
star product. A star product (5) is natural if the bidifferential operator
C, is of order not greater than r in both arguments for every r > 1.
Equivalently, a star product x is natural if the operators Ly and Ry
are natural for all f € C*°(M). Then Ly and Ry are natural for
all f € C°(M)[[v]]. All classical star products (Moyal-Weyl, Wick,
Fedosov, and Kontsevich star products) are natural (see [5], [4], and
[9]). We give an equivalent description of natural star products in
terms of oscillatory distributions in Theorem 4.1 below. To prove this
theorem, we need some preparations.

Let tq,...,t, be formal parameters, where n is any number, and

A= (DM) () [[t1, - - 1]

be the associative algebra of formal differential operators on M of the
form
(6) A=

, ATk
Ly, .ty AT

0

o]
k=

where A7-J¢ € D((v)) are v-formal differential operators on M sym-
metric in jy,...,Jk. We equip A with the t-filtration {A4;} for which
the filtration degree of ¢; is 1 for every i (and the filtration degree
of v is zero). We say that an operator (6) is natural if all oper-
ators AJ1-J% are natural. The algebra A acts on the space F :=
(C®(M)((v))) [[t1,-.-,ts]] equipped with the t-filtration {F;}. The
space JF is a commutative algebra with respect to the “pointwise” mul-
tiplication of formal series. Given f € F, we denote by m; the multi-
plication operator by f. Then m; € A and ms1 = f. Each operator
A € A is uniquely represented as the sum

(7) A=ma + (A—ma),

where A — my; annihilates constants, (A —ma;)1 = 0.

Let g C A; be the Lie algebra of operators of positive t-filtration
degree of the form vt A, where A € A is natural. The Lie algebra g is
pronilpotent with respect to the ¢-filtration {g;}, where i > 1. Its Lie
group is exp g C Ap.

Denote by a the commutative subalgebra of g of multiplication opera-
tors and by b the subalgebra of g of operators that annihilate constants.
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Then g=a® b and g; = a; d b; for all 7 > 1 in accordance with the
representation (7). Let G be the set of formal functions

f=vifa+fotrvh+...
from F;. Then a = {my|f € G}. Given f € G, the exponential series

1
ef:1+f+§f2+...

defines an element of F; and expa = {m.s|f € G}. We set
expG = {ef|f € G} C Fo.
It is the Lie group of the commutative Lie algebra G. The mapping

a + al is a group isomorphism from exp a onto exp G.

Lemma 4.1. For each g € expg, the operator g leaves invariant the
set expG. In particular, gl € exp .

Proof. Assume that g € expg and f € G. Then m,s € expa and
gm.s € expg. By Proposition 2.1, the element gm,s is uniquely repre-
sented as a product gm,r = ab, where a € expa and b € expb. Then
al € expG and bl = 1. Therefore, applying the operator g to the
function e/, we get

gle!) = (gmer)1 = (ab)l = al € expG.
Thus, g(expG) C exp G and therefore g1 € expG. O

Let x be a natural star product on M. We extend it to F so that
L;, = Ry, = t; be the “pointwise” multiplication operator by ¢* for
every i. The space G C Fy is a Lie algebra with respect to the star-
commutator [f,gl, = f*g— g* f. This Lie algebra is pronilpotent
with respect to the t-filtration {G;}, where ¢ > 1. Given f € G, the
exponential series

exp*f:1+f+%f*f+...

defines an element of F,. We set

exp, G := {exp, f|f € G} C Fo.
This is the Lie group of the Lie algebra (G, [+, -|,).
Lemma 4.2. The subsets exp, G and exp G of Fy coincide.

Proof. Given f € G, the operator vL; = L, is natural and therefore
Ly € g. Thus, expL; € expg. By Lemma 4.1, the operator exp L
with f € G leaves invariant the set expG. Given f,g € G, we have

(exp, f) xe? = (Lexp* f) e = (expLys)e? € expG.
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Taking g = 0, we get that exp, f € expG. Hence, exp, G C expg.
Given u € G;, there exists v € G such that e’ = exp, (—u)xe". Since

e =1+4+wu (mod Fy) and exp,(—u) =1—u (mod Fy),

we see that e € 1 + Fy; and therefore v € Gy;.
Let f € G = G;. We will show that e/ € exp, G. We construct a
sequence {fi},k >0, in G such that fy = f € G; and

efb+1 — eXp*(—fk) * ek

for k > 0. We have f, € Gy for all £ > 0. Observe that

ef =elt = (exp*fl)*ef2 = (exp, f1) * (exp, f2)*€f3 = ...

Since e/* — 1 as k — oo in the topology induced by the t-filtration,
we get that

el = (exp, f1) * (exp, fa) * ... € exp, G.
It follows that exp, G = exp§. O

We give some basic facts on full symbols of formal differential oper-
ators. Let U be a coordinate chart with coordinates {z'},i =1,...,n,
and let {¢;} be the dual fiber coordinates on T*U which are treated as
formal parameters. A formal differential operator A € D(U)((v)) can
be written in the normal form as

e’} Nj
A= Z v Z A;l"'ir ()0, ... 0,
Jj=k =0

where k € Z,Aé.l"'i*(x) € C*®(U) is symmetric in iy, ..., for all j
and r, and 9; = 9/0x". The full symbol of the operator A is the formal
series

oo Nj
S(A) =) D> VAT (@) &
j=k r=0
which is an element of (C*(U)((v))) [[£1, - - -, &n)], because for a fixed r
the power of v is bounded below by k — r. The operator A is natural
if and only if V; < j for all j or, equivalently, S(A) does not contain
negative powers of v. It is well-known that

(8) S(A) = e v A (e%xig") = (e_%xi&Ae%xi&> 1.

The C((v))-linear mapping A — S(A) restricted to the formal differen-
tial operators with constant coefficients is an algebra homomorphism:
if A and B have constant coefficients, then S(AB) = S(A)S(B).
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For every x € M there exists a formal distribution A, on M? sup-
ported at (z,z) such that

A(f ®g) = (fxg)(z)
for all f,g € C°(M).

Theorem 4.1. A star product * on a manifold M is natural if and
only if the formal distribution A, is oscillatory for all x € M.

Ezample. Let (7%) be an n X n matrix with constant coefficients.
The star product

A o arf arg
* g = — It — : 4 .
frg Z r! T T ox ... 0Jxt Qxir ... Oxir

on R” is natural. If the matrix (7%) is skew-symmetric and nonde-
generate, this is the Moyal-Weyl star product. Consider the natural
operator
2
e 2,17
=T ——
0y'0z’

on R?". The formula
Ae(f @) = (f*9)(@) = ¢ A (f(W)g())],_._,

where f,g € C>°(R"™), shows that the formal distribution A, is oscil-
latory for any z. It is nondegenerate if and only if the matrix (7%) is
nondegenerate.

Now we proceed with a proof of Theorem 4.1.

Proof. Assume that a star product x on M is such that the distribution
A, is oscillatory for all z € M. Let U be a coordinate chart on M with
coordinates {x'}. Then for each x € U there exists a unique natural
operator with constant coefficients

o o'
i1 Zk.]l .]l
(9) Z Z Eok @yil Oy Ozt . Dz

r=2 k+i<r

such that
(10) (f *g)( )= O (f()g(2)],_._,
Since (f x 1)(z , we get that

r—1 i1 lk
eXP(rZQI/ ZFrko 6yll...8ylk)f(y)

k<r

= f(z)

y=z

for any f(z). Hence, Fﬁlk 0““( ) = 0 for all 7 and k. Similarly, Fglo‘j‘l‘jl (x) =
0 for all r and l.
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Given f € C*(U), we will prove that the operator L; is natural. To
this end, we will calculate its full symbol S(Ly) using (8) and (10). We
will show that it does not contain negative powers of v. We have

S(Ly) = e TELy (756 ) = e (fae )

_lgie =1 A vy,
¢ &g Al) <f(y)€ a)
Y=z=x

(€—u’1zi§ieyflA(ac)euflzifi> f(y)

Yy=z==x

exp (e_”_lzi& (v A(x)) €V_12i&> f()

Yy=z=x

It suffices to prove that the operator e™ *'é (v"1A(z)) e’ #'é does
not contain negative powers of v. Using (9), we will write this operator
as follows,

e 0" o 1 0 1
r—1 11 AgJ1ee-d ¢, - _C.
ZV Z il layil L Oy (8211 * yﬁ]l) (8211 * 1/5”> '

k+I<r

Since Fﬁb‘j” = 0 for all  and [, the condition k& + [ < r in the second
sum implies that [ < r — 1, which proves the claim. One can show
similarly that the operator Ry is natural for f € C°°(U). Since U is
arbitrary, the star product x is natural on M.

Now assume that = is a natural star product on M and U C M is
an arbitrary coordinate chart. We will show that A, is oscillatory for
every x € U. Let {&} and {n;} be two sets of formal variables dual
to {z'}. We extend the star product x to F := (C>(U)((v)))[[, n]]
so that L¢, = Re, = & and L,, = R,, = n, for all . Denote by G the
Lie algebra of functions from v~'C>(U)[[v,&,n]] of positive filtration
degree with respect to the variables £ and n with the star commutator
[, gl« = fxg—g*[ as the Lie bracket. This is a pronilpotent Lie algebra
with the Lie group exp, G whose elements are the star exponentials

exp*f:1+f+%f*f—l—...

of the elements of G. We can write the star product x as (10) with

1.0k J1 - Jl 8k 61
ZV Z Frki )8yi1...8yikazﬁ...32jl’

r=2 k+I<N,

where N, is some integer for each r > 2. We have to show that A(z)
is natural for every x € U, i.e., that N, < r for all » > 2. To this end,
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we consider two functions in exp G = {e/|f € G},
flz):=¢e" "% and g(z) == e

By Lemma 4.2, f, g € exp, G. Therefore, fxg € exp, G = expG. Using
(8) and (10), we get that for x € U,

(f*g)(x) _ euflA(m) <€V’1(yifi+z"m‘)> ‘ —

tatn;

Yy=z=x

e”’lf’/‘"(Eier) (eﬂ,fl(yigﬁzim)e,rlA(x)erl(yigﬁzim)) 1} N
y=z=zx

o Gt g (6”‘1A(x)) — ¢ (#E@HITSA@) ¢ expg,

where
S(A) =) > VTMERM T @) Gy
r=2 k+I<N,
is the full symbol of A(z). Since
v (' (& +m) + S(A()) €6,

S(A(z)) does not contain negative powers of v, which implies that
A(x) is natural and therefore A, is oscillatory for any = € U. Since U
is arbitrary, A, is oscillatory for any x € M. U

In [6] it was shown that the natural star products have a good semi-
classical behavior. Theorem 4.1 relates these star products to oscilla-
tory distributions which can be thought of as quantum objects.

5. FORMAL OSCILLATORY INTEGRALS
Let M be a real n-dimensional manifold, xg be a point in M,
p=v"p 1+ @0+ et

be a formal complex-valued function and p = py+vp1+. .. be a formal
complex-valued density on M such that z, is a nondegenerate critical
point of ¢_; with zero critical value, ¢p_1(z9) = 0, and po(xo) # 0.
We call the pair (¢, p) a phase-density pair with the critical point zg.
A formal oscillatory integral (FOI) at x, associated with the phase-
density pair (¢, p) is a formal distribution

A:A0+VA1+...

on M supported at zy such that the value A(f) for an amplitude f
heuristically corresponds to the formal integral expression

(11) v3 /e“’fp.
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The distribution A is defined by certain algebraic axioms expressed in
terms of the pair (¢, p) which correspond to formal integral properties
of (11). The full stationary phase expansion of an oscillatory integral
(1) whose amplitude is supported near a nondegenerate critical point
of the phase function is given by a FOI. The notion of a FOI was
introduced in [8] and developed further in [7].

Definition 5.1. Given a phase-density pair (@, p) with a critical point xo
on a manifold M, a formal distribution A = Ao +vA1+... on M sup-

ported at xo and such that Ag is nonzero is called a formal oscillatory

integral (FOI) associated with the pair (¢, p) if

(12) A(vf + (vp +div,ye)f) =0
for any function f and any vector field v on M.

In (12) div,v denotes the divergence of the vector field v with respect
to p given by the formula

L,
div,v = p’

P

where L, is the Lie derivative with respect to v. Axiom (12) corre-
sponds to the formal integral property

V2 /Lv(e“"fp) = 0.

Observe that the condition (12) is coordinate-independent. As shown
in [7], a FOI A associated with (¢, p) satisfies the following properties.

(1) A exists and is unique up to a multiplicative formal constant
c=co+ve+ ... with ¢g # 0.

(2) Ay = ad,, for some nonzero complex constant a.

(3) A is determined by the jets of infinite order of ¢ and p at .

(4) If w = up + vuy + ... is any formal function on M, then A is
associated with (¢ 4+ u, e "p).

(5) If A is associated with two pairs (¢, p) and (@, p) which share
the density p, then the full jet of p—p at xq is a formal constant.

Definition 5.2. A FOI associated with a pair (@, p) is strongly asso-
crated with it if

d df dp dp/dv n B
(13) @A(f)_A(£+<E+T_Z)f>O

for any function f.
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The condition (13) is coordinate-independent. It corresponds to the
formal property of (11) that integration commutes with differentiation
with respect to the formal parameter v. A FOI A strongly associated
with (¢, p) satisfies the following properties.

(1) A exists and is unique up to a multiplicative nonzero complex
constant.

(2) A is determined by the jets of infinite order of ¢ and p at .

(3) If u = up + vuy + ... is any formal function on M, then A is
strongly associated with (¢ + u, e p).

(4) If A is strongly associated with two pairs (¢, p) and (@, p) which
share the density p, then the full jet of ® —p at x4 is a complex
constant.

It follows that for any phase-density pair (¢, p) with a critical point
xo there exists a unique FOI A strongly associated with it and such
that Ay = d,,. It is coordinate-independent because it is determined
by the coordinate-independent conditions (12) and (13). After some
preparations, we will give a formula for A in local coordinates.

6. OPERATORS ON A SPACE OF FORMAL JETS

Let M be a real manifold of dimension n. Denote by J the space of
jets of infinite order on M supported at xq € M, which is equipped with
the decreasing filtration {J;} by the order of zero at xy. The space J
is complete with respect to this filtration. Denote by D®*) the space of
differential operators on J of order at most k. An element A € D) is
a linear mapping A : J — J such that ad(fy)...ad(fx)A = 0 for any
fi € J, where ad(f)A=[f,A] = foA— Ao f. Then

D= G D)
k=0

is the algebra of differential operators of finite order on J. The filtra-
tion on J induces a filtration {D;}, where i € Z, on D. The filtration
degree of an operator A € D is the largest integer k such that

ATy C T

for all » > 0. The filtration degree of a differential operator of order k
is at least —k, D%) C D_,,. Each space D® is complete with respect to
this filtration, but D is not. The completion D of D contains differential
operators of infinite order on J. Denote the filtration degree of f € J
and of A € D by d(f) and d(A), respectively.

Let AV be the algebra of natural operators on J|[[v]],

N = {4y +vA, +...|A, € D for all r > 0}.
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Clearly, v* N C N for all k > 0. We consider the algebra A/((v)) whose
elements are of the form v*A, where k € Z and A € N,

N((v)) = U v'N.

Notice that v~*A is a Lie algebra with respect to the commutator of
operators and v~ !N acts on N by the adjoint action: given A € v='N
and B € N, we have ad(A)B = [A, B] € N.

We equip the algebra N((v)) with the following filtration. We set
d(v) = 2. The filtration degree of A € V"N written as A = v" Ay +
VA + .. with A, € D® s

d(A) = inf{2(r + k) + d(Ax)|k > 0}.
Since d(Ag) > —k, we get that 2(r + k) + d(Ax) > 2r + k. Hence,
d(A) > 2r. We call this filtration on N'((v)) and a similar filtration
on J((v)) the standard filtration. The algebra N is complete with
respect to the standard filtration, {N;}, but A'((v)) and J((v)) are
not. Denote by A the completion of the algebra N ((v)) with respect

to the standard filtration and by F the completion of J((v)). The
algebra A acts on F. The elements of A and F can be written as

certain series
E v"A, and E v fr,

r€Z reZ
respectively, where A, € D and freJ. Set

g:={Aev'N|[d(A4) > 1} C A;.

It is a pronilpotent Lie algebra whose Lie group exp g lies in Aj.

Suppose that (¢, p) is a phase-density pair on M with a critical point
xg and U is a coordinate neighborhood of xy with coordinates {z'} such
that z'(zo) = 0 for all 4, that is, zop = 0. We set

- 01
i = .
0z'0x7 |, _,
Then (h;;) is a symmetric nondegenerate complex matrix with constant
entries. Let (h") be its inverse matrix. We set

(14) P = L haied and A = —1p o
oo T2 Oxidad’

In [7], Lemma 9.1, we proved that the formal distribution

(15) A(f) =],

is a FOI associated with the pair (v~1¢, dz), where dox = dz' ... dx"™ is
the Lebesgue density on U.
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Lemma 6.1. The FOI (15) is strongly associated with the pair (v, dx).
Proof. Tt follows from formula (12) with v = 2'9; and p = dxz that
(16) A0 f + (2v % +n) f) =0,

where we have used that vy = 2¢ and L,p = np. Replacing f with
—3h"9; f and setting v = 9; in (12), we get

(17) A (Af — %leiaif> =0,

where the summation on ¢ is assumed. Dividing (16) by 2v and adding
the result to (17), we get

(18) A (Af + (u—% + %V‘ln) f) =0.

Now we verify (13) with ¢ = v~'¢ and p = dz using (18):

d i (U SN _
@A(f)_A(@_(y w+§1/ n)f)
A (Af+%) —A (% —~ (V2w+%uln> f) = 0.

Assume that locally
p=e"dx,
where u = ug + vuy + ... € C°(U)[[v]]. We call the function

X(2) = p(a) = v — 9o(0) + u(z) — uo(0)

the phase remainder. Since we will need only the jet of infinite order
of x at 2y = 0, we identify y = v='x_; + xo + ... with its jet. The
order of zero of xy_; and of o at g = 0 is at least 3 and 1, respectively.
Hence, x € F; and therefore the operator expx acts on JFy. Since
d(vA) = 0, the operator exp(rA) acts on J((v)) and respects the
standard filtration. Thus, it also acts on F respecting the filtration.
We define a formal distribution A on U supported at o = 0 by the
formula

(19) A(f) = (e”AeXf) |$:0.

If f € C=(U)[[v]], then its jet at xo = 0 lies in Fy. Hence, e’2eXf € JF,
which implies that A(f) € C[[v]] and therefore A = Ag+vA; +... (the
coefficients at the negative powers of v in e“2eXf vanish at o = 0
because its filtration degree is nonnegative).
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Proposition 6.1. The formal distribution (19) is the unique FOI A =

Ao + vAy + ... strongly associated with the pair (¢, p) and such that
AO == (5

Proof. 1t follows from [7], Theorem 9.1, that A is associated with the
pair (¢, p) and Ay = 0. It remains to prove that it is strongly associated
with (¢, p) or, equivalently, with the pair (v=1¢ + y,dr). We will use
Lemma 6.1 and the fact that A(f) = A(eXf). We have

A = aen =& (en+ (<55 ) @) =

(. (df v dyxy n B
M (@ (s 2)7) -
/

A(%—l— (d%(ulwrx)—%) )

7. IDENTIFICATION OF FORMAL OSCILLATORY INTEGRALS
Below we will prove the following theorem.

Theorem 7.1. A formal distribution A = Ag+vA1+. .. on a manifold
M supported at a point xo € M is a FOI strongly associated with some
pair (@, p) with the critical point xy and such that Ag = 0y, if and only
if A is a nondegenerate oscillatory distribution.

Let (h;;) be a symmetric nondegenerate complex n x n matrix with
constant entries and (h*) be its inverse matrix. We use the same
notations ¢ and A as in (14). Observe that vA and v~ lie in v™'N
and d(vA) = d(v'¢) = 0.

Lemma 7.1. The adjoint action of the operators vA and v='1 by
derivations of the algebra N integrates to automorphisms of this alge-
bra which respect the standard filtration and therefore extend to auto-
morphisms of the algebras A and g and the Lie group exp g.

Remark. The operator exp vA acts on the space F, but the operator
exp(v~1) is undefined on that space.

Proof. Given A = Ag + vA; + ... € N, we have d(4,) > —r, hence
d(v"A,) > r, and therefore v A, € N, for all » > 0. The action of
exp(ad(vA)) maps v" A, to

VT+S

>~ (ad(2))'(4,) e N

s=0

6ad(l/A) (VTAT)
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The action of exp(ad(r~')) maps v" A, to

T

T (AL = Z l(ad(y_l¢))s(yrAr) e N,.

|

s
It follows that e*12)(A) and 21 '¥)(A) are elements of A, because
N is complete with respect to the standard filtration. 0

Now we will give a proof of Theorem 7.1.

Proof. Fix local coordinates {z'} around zy such that z'(zy) = 0 for
all 7. Denote by b the Lie algebra of operators A € g such that oA =0
and by ¢ the Lie algebra of operators from g with constant coefficients.
Then g = b @ c. Let (p,p) be a phase-density pair on M with the
critical point zo = 0 and x be the corresponding phase remainder.
Then (19) is the unique FOI strongly associated with (¢, p) and such
that Ay = 0. Lemma 7.1 implies that

™A (eX) € exp g.
By Proposition 2.1, there exist unique elements B € b and C' € ¢ such
that
(20) e (ex) = Bl
It follows that
A(f) = ("2 f) [,y = (e"SeXe™ e ) |,y =
(ead(VA) (ex)e”Af> ‘a::O _ <€BBC€VAf) ‘x:O _ (euAJrCf) |x:07

where we have used that the operators with constant coefficients vA
and C' commute. The operator C' can be written as

C = Vﬁl(XO + I/Xl + .. .),

where X, has constant coefficients, is of order at most r, and whose
filtration degree is at least 3 — 2r for all r. It follows that Xy = X; =0
and X5 is of order at most 1. We see that

VA+C=v (V(A+ X))+ Xs+ v Xy +..) e vV

and the operator A + X5 can be written in coordinates as
1. .. )
(21) —Eh”&@j + bl& +c.

Since the matrix (h*) is nondegenerate, the FOI A is a nondegenerate
oscillatory distribution.

Now suppose that A is a nondegenerate oscillatory distribution on a
manifold M supported at xp € M. Fix local coordinates {z'} around
xo such that z'(zg) = 0 for all 7. According to Proposition 3.1, there
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exists a unique natural operator with constant coefficients X = 12X, +
3 X5 + ... such that

A=doexp(v'X).
If we write X, as (21), where (h%) is a symmetric matrix with constant

entries, then this matrix is nondegenerate because A is a nondegenerate
oscillatory distribution. We will have that

C .= V_lX + gh”@zﬁj SHW

Let (h;;) be the matrix inverse to (h"). We will use the settings (14)
and will show that there exists a v-formal jet x = v~1y_1 + xo0 + ...
at xp = 0 of positive filtration degree such that (20) holds for some
B € b. It will mean that A is a FOI at xy = 0 strongly associated with
the phase-density pair (v~1¢ + x, dx)'.

Denote by ¢ the Lie algebra of operators from g that can be written
as

A=0;0A

for some formal differential operators A;. If we use the standard trans-
position A — A’ of differential operators such that (9;)" = —9; and
()" = a', then A € ¢ if A € g and A’ annihilates constants, A'1 = 0.
Denote by § the Lie algebra of multiplication operators from g. Then
g =¢®f. A simple calculation shows that

0 - 0
efad(UA)(xk) — :Ck + thl@ and ead(y 1¢)67ad(1/A)<xk) — yhkl@.
Therefore, the conjugation
A ead(ufll/))e— ad(rvA) (A)

provides isomorphisms of the Lie algebra b onto ¢ and of the Lie group
exp b onto exp e. By Proposition 2.1, there exist unique elements £ € ¢
and x € f such that

ead(u_lw) (60) — oFex.

Acting on both sides by exp(ad(rA)) exp(—ad(r—1¢)), we get
o — (ead(m)ead(—flzp) (eE)> (ead(uA)(ex)) ’
which implies (20) if we set
B 1= —erd0d) ) (B ¢ )
It completes the proof of the theorem. 0

1By Borel’s lemma it suffices to give only the jet of infinite order of the phase at
Tog = 0.
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We want to make two concluding remarks.

It is interesting to notice that Theorem 7.1 and Proposition 3.1 in [7]
imply that if A is a nondegenerate oscillatory distribution supported
at xg, then the pairing

frg+ A(fg)

on the space of formal jets J[[v]] is nondegenerate.
Since Fedosov’s star product x on a symplectic manifold M is natural,
it follows from Theorem 4.1 that the formal distribution

A(f®g) = (f*9)(x)

is oscillatory for every x € M. This distribution is nondegenerate
for any x because C(f,g) = 7©70;f0;g, where 7" is a nondegenerate
Poisson tensor. According to Theorem 7.1, the distribution A, is given
by a formal oscillatory integral. Fedosov’s construction does not use
any oscillatory integral formulas. Only in the simplest case of the
Moyal-Weyl star product it is given by the asymptotic expansion of a
known oscillatory integral (and hence by a formal oscillatory integral).
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