Abilene Christian University
Digital Commons @ ACU

Chemistry and Biochemistry

College of Arts and Sciences

1-2020

5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1Hpyrazol-4-yl)-2-phenyl-1H-pyrazol-3(2H)-one

Gregory Powell Abilene Christian University, powellg@acu.edu

Brad Rix Abilene Christian University, bar15b@acu.edu

Follow this and additional works at: https://digitalcommons.acu.edu/chemistry_biochem

Part of the Chemistry Commons

Recommended Citation

Powell, Gregory and Rix, Brad, "5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-phenyl-1H-pyrazol-3(2H)-one" (2020). *Chemistry and Biochemistry*. 3. https://digitalcommons.acu.edu/chemistry_biochem/3

This Article is brought to you for free and open access by the College of Arts and Sciences at Digital Commons @ ACU. It has been accepted for inclusion in Chemistry and Biochemistry by an authorized administrator of Digital Commons @ ACU.

IUCrData

ISSN 2414-3146

Received 22 January 2020 Accepted 28 January 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; pyrazolone rings; hydrogen bonding.

CCDC reference: 1949067

Structural data: full structural data are available from iucrdata.iucr.org

5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-2-phenyl-1*H*-pyrazol-3(2*H*)-one

Gregory L. Powell* and Brad A. Rix

Department of Chemistry & Biochemistry, Abilene Christian University, Abilene, Texas 79699-8132, USA. *Correspondence e-mail: powellg@acu.edu

The title compound, $C_{20}H_{18}N_4O_2$, known as bispyrazolone, was crystallized from dimethyl sulfoxide. The structure has orthorhombic (*Pbca*) symmetry at 150 K, and displays both intra- and intermolecular hydrogen bonding through C– $H \cdots O$ and N– $H \cdots O$ contacts, respectively. None of the phenyl and pyrazolone rings in the molecule are coplanar. The dihedral angle between the pyrazolone rings is 66.18 (5)°.

Structure description

Pyrazolones have been studied as antipyretics and analgesics (Brune, 1997; Badawey & El-Ashmawey, 1998; Gürsoy et al., 2000), as anxiolytics (Geronikaki et al., 2004), and as antihyperglycemic agents (Kees et al., 1996). These compound types have also been found to have antioxidant and neuroprotective activities, and have been used to treat amyotrophic lateral sclerosis (ALS) and ischemia (Watanabe et al., 2004; Yoshida et al., 2006; Yuan et al., 2008). Pyrazolones have also been looked at as potential HIV-1 integrase inhibitors (Hadi, et al., 2010). In addition to the multitude of possibilities in medicinal chemistry, pyrazolone research has led to prospective antimicrobial compounds (Chande et al., 2007) and corrosion inhibitors (Elmorsi & Hassanein, 1999). The title compound, bispyrazolone, is primarily used as part of a pyridine-pyrazolone reagent for the detection of amine compounds. This method can quantify levels of cyanide (Epstein, 1947), ammonia and cyanate (Kruse & Mellon, 1952), and urea (Sharma et al., 2013). It may also be used to determine the percentage of nitrogen in steel samples (Lear & Mellon, 1957). Bispyrazolone and similar derivatives have also been examined as color developers (Bavley, 1946) and as lubricating oil thickeners (McGrath and Pellegrini, 1961) for hightemperature greases.

In the crystal structure of the title compound, the molecules are non-planar (Fig. 1). The dihedral angle between the two pyrazolone rings is $66.18 (5)^{\circ}$, while that between the

Та	ble	1				
Hy	/drog	gen-bon	d geomet	try (Å	⊾, °).	
-	тт		D			D

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots $
$N2-H2\cdots O2^{i}$ $N4-H4\cdots O1^{ii}$ $C20-H20\cdots O2$	0.89(2)	1.85(2)	2.7313 (14)	175.1 (18)
	0.93(2)	1.81(2)	2.7321 (15)	169.3 (18)
	0.95(2)	2.23(2)	2.8988 (17)	126 5 (16)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 1.

phenyl rings is 39.44 (6)°. The ring systems in the halves of the molecules have significantly different degrees of rotation with respect to one another. The dihedral angle between the C9–C14 phenyl ring and the N1/N2/C1–C3 pyrazolone ring is 34.29 (6)° while that between the C15–C20 phenyl ring and the N3/N4/C5–C7 pyrazolone ring is 13.75 (7)°. The latter is a consequence of intramolecular C–H···O hydrogen bonding between the C20–H20 group on the phenyl ring and the O2 atom of the pyrazolone ring (Table 1, Fig. 2).

In the crystal, the molecules pack in a manner that maximizes intermolecular hydrogen bonding. Both oxygen atoms and both N-H groups of each bispyrazolone molecule are involved in forming four hydrogen bonds with three neighboring molecules (Table 1, Fig. 2). The intermolecular hydrogen bond axes lie approximately in the *bc* plane of the unit cell. Thus hydrogen-bonded sheets of the molecules stack perpendicular to the *a* axis (Fig. 3).

Synthesis and crystallization

A sample of the title compound was used as received from Sigma–Aldrich, and dissolved in hot dimethylsulfoxide. Colorless crystals were obtained by slow cooling of this solution to 298 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

The title molecule with the labeling scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2

View of the intramolecular (blue dotted lines) and intermolecular (red dotted lines) hydrogen bond interactions. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) $-\frac{1}{2} + x$, $\frac{3}{2} - y$, 1 - z; (iii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, 1 - z.]

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021).

References

Badawey, E. A. M. & El-Ashmawey, I. M. (1998). *Eur. J. Med. Chem.* **33**, 349–361.

Bavley, A. (1946). U. S. Patent 2411951. Brune, K. (1997). *Acute Pain*, **1**, 33–40.

Figure 3 Packing of the molecules viewed approximately along the *a* axis with hydrogen bonds shown as dotted lines.

Table 2Experimental details.

. .

Crystal data	
Chemical formula	$C_{20}H_{18}N_4O_2$
M _r	346.38
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.7438 (1), 18.7561 (2), 20.8005 (2)
$V(Å^3)$	3411.27 (6)
Ζ	8
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	0.73
Crystal size (mm)	$0.27 \times 0.21 \times 0.03$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Cu, AtlasS2 CCD
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.874, 1.000
No. of measured, independent and	16964, 3336, 3020
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.619
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.113, 1.04
No. of reflections	3336
No. of parameters	307
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.26, -0.25

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Chande, M. S., Barve, P. A. & Suryanarayan, V. J. (2007). *Heterocycl. Chem.* 44, 49–53.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341. Elmorsi, M. A. & Hassanein, A. M. (1999). Corros. Sci. 41, 2337-2352. Epstein, J. (1947). Anal. Chem. 19, 272-274. Geronikaki, A., Babaev, E., Dearden, J., Dehaen, W., Filimonov, D., Galaeva, I., Krajneva, V., Lagunin, A., Macaev, F., Molodavkin, G., Poroikov, V., Pogrebnoi, S., Saloutin, V., Stepanchikova, A., Stingaci, E., Tkach, N., Vlad, L. & Voronina, T. (2004). Bioorg. Med. Chem. 12, 6559-6568. Gürsoy, A., Demirayak, S., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364. Hadi, V., Koh, Y.-H., Sanchez, T. W., Barrios, D., Neamati, N. & Jung, K. W. (2010). Bioorg. Med. Chem. Lett. 20, 6854-6857. Kees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCaleb, M. L. (1996). J. Med. Chem. 39, 3920-3928.
- Kruse, J. M. & Mellon, M. G. (1952). Sewage Ind. Waste. 24, 1254– 1259.
- Lear, J. B. & Mellon, M. G. (1957). Anal. Chem. 29, 293-295.
- McGrath, J. J. & Pellegrini, J. P. (1961). US Patent 2983683.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Sharma, V., Khurana, J. M. & Muralidhar, K. (2013). Proc. Indian Natl. Sci. Acad. 79, 51–56.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Watanabe, T., Tanaka, M., Watanabe, K., Takamatsu, Y. & Tobe, A. (2004). Yakugaku Zasshi, 124, 99–111.
- Yoshida, H., Yanai, H., Namiki, Y., Fukatsu-Sasaki, K., Furutani, N. & Tada, N. (2006). CNS Drug Rev. 12, 9–20.
- Yuan, W. J., Yasuhara, T., Shingo, T., Muraoka, K., Agari, T., Kameda, M., Uozumi, T., Tajiri, N., Morimoto, T., Jing, M., Baba, T., Wang, F., Leung, H., Matsui, T., Miyoshi, Y. & Date, I. (2008). *BMC Neurosci.* 9, 75.

full crystallographic data

IUCrData (2020). **5**, x200121 [https://doi.org/10.1107/S2414314620001212]

5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-2-phenyl-1*H*-pyrazol-3(2*H*)-one

Gregory L. Powell and Brad A. Rix

5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-phenyl-1H-pyrazol-3(2H)-one

 $D_{\rm x} = 1.349 {\rm Mg m^{-3}}$

Plate, clear colourless

 $0.27 \times 0.21 \times 0.03 \text{ mm}$

 $T_{\min} = 0.874, \ T_{\max} = 1.000$

 $\theta_{\rm max} = 72.6^\circ, \ \theta_{\rm min} = 4.3^\circ$

16964 measured reflections

3336 independent reflections

3020 reflections with $I > 2\sigma(I)$

 $\theta = 4.7 - 72.3^{\circ}$

 $\mu = 0.73 \text{ mm}^{-1}$ T = 150 K

 $R_{\rm int} = 0.028$

 $h = -7 \rightarrow 10$ $k = -22 \rightarrow 23$

 $l = -25 \rightarrow 24$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 9599 reflections

Crystal data

 $C_{20}H_{18}N_4O_2$ $M_r = 346.38$ Orthorhombic, *Pbca* a = 8.7438 (1) Å b = 18.7561 (2) Å c = 20.8005 (2) Å $V = 3411.27 (6) Å^3$ Z = 8F(000) = 1456

Data collection

Rigaku Oxford Diffraction SuperNova, Cu, AtlasS2 CCD diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 5.2387 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Rigaku OD, 2019)

Refinement

Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	All H-atom parameters refined
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.0692P)^2 + 1.0751P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3336 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
307 parameters	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms bound to N2 and N4 were located in a difference map and refined. All hydrogen atoms were located in a difference map and were refined isotropically without constraints.

	X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
01	0.17850 (10)	0.59409 (5)	0.52406 (4)	0.0228 (2)	
O2	0.41464 (11)	0.62429 (5)	0.38211 (4)	0.0254 (2)	
N1	0.33303 (11)	0.51616 (5)	0.58208 (5)	0.0197 (2)	
N2	0.48738 (12)	0.51224 (6)	0.59817 (5)	0.0203 (2)	
H2	0.525 (2)	0.4688 (11)	0.6043 (9)	0.040 (5)*	
N3	0.49474 (13)	0.74084 (6)	0.40463 (5)	0.0228 (2)	
N4	0.53811 (15)	0.77703 (6)	0.45972 (6)	0.0283 (3)	
H4	0.587 (2)	0.8209 (12)	0.4598 (9)	0.043 (5)*	
C1	0.30864 (14)	0.57394 (6)	0.54173 (6)	0.0189 (3)	
C2	0.45779 (14)	0.60260 (6)	0.52877 (6)	0.0200 (3)	
C3	0.56144 (15)	0.56250 (6)	0.56271 (6)	0.0205 (3)	
C4	0.73088 (16)	0.56807 (8)	0.56622 (7)	0.0280 (3)	
H4A	0.760 (2)	0.5841 (11)	0.6082 (10)	0.047 (5)*	
H4B	0.769 (2)	0.6027 (12)	0.5330 (10)	0.048 (5)*	
H4C	0.781 (2)	0.5205 (13)	0.5591 (11)	0.057 (6)*	
C5	0.46008 (14)	0.67053 (6)	0.42150 (6)	0.0206 (3)	
C6	0.48650 (14)	0.66557 (6)	0.48898 (6)	0.0210 (3)	
C7	0.53634 (16)	0.73124 (7)	0.50942 (7)	0.0252 (3)	
C8	0.5806 (2)	0.75544 (8)	0.57491 (7)	0.0378 (4)	
H8A	0.615 (3)	0.7180 (16)	0.6015 (14)	0.088 (9)*	
H8B	0.657 (3)	0.7932 (13)	0.5731 (11)	0.060 (6)*	
H8C	0.490 (3)	0.7748 (16)	0.5982 (14)	0.086 (9)*	
C9	0.22459 (14)	0.47963 (6)	0.62063 (6)	0.0203 (3)	
C10	0.26090 (16)	0.46291 (7)	0.68395 (7)	0.0249 (3)	
H10	0.3582 (19)	0.4766 (9)	0.7016 (8)	0.028 (4)*	
C11	0.15554 (16)	0.42644 (7)	0.72142 (7)	0.0282 (3)	
H11	0.1800 (19)	0.4165 (9)	0.7650 (9)	0.030 (4)*	
C12	0.01470 (16)	0.40714 (7)	0.69603 (7)	0.0280 (3)	
H12	-0.060(2)	0.3814 (9)	0.7228 (9)	0.033 (4)*	
C13	-0.02218 (15)	0.42573 (7)	0.63351 (7)	0.0264 (3)	
H13	-0.122 (2)	0.4129 (9)	0.6151 (8)	0.031 (4)*	
C14	0.08272 (15)	0.46155 (7)	0.59499 (7)	0.0234 (3)	
H14	0.0610 (18)	0.4727 (9)	0.5502 (8)	0.025 (4)*	
C15	0.47280 (15)	0.77740 (7)	0.34550 (6)	0.0232 (3)	
C16	0.52997 (19)	0.84583 (8)	0.33728 (8)	0.0349 (4)	
H16	0.585 (2)	0.8683 (12)	0.3736 (11)	0.056 (6)*	
C17	0.5073 (2)	0.88090 (8)	0.27926 (8)	0.0388 (4)	
H17	0.552 (2)	0.9301 (11)	0.2736 (10)	0.046 (5)*	
C18	0.4295 (2)	0.84888 (8)	0.22973 (7)	0.0368 (4)	
H18	0.417 (2)	0.8738 (10)	0.1885 (9)	0.040 (5)*	
C19	0.3694 (2)	0.78142 (9)	0.23859 (8)	0.0440 (4)	
H19	0.313 (2)	0.7578 (12)	0.2045 (11)	0.054 (6)*	
C20	0.3906 (2)	0.74557 (8)	0.29632 (7)	0.0367 (4)	
H20	0.352 (2)	0.6986 (12)	0.3029 (10)	0.051 (5)*	
		· ,	· /		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0240 (5)	0.0187 (4)	0.0256 (5)	0.0027 (3)	-0.0025 (4)	0.0029 (3)
O2	0.0357 (5)	0.0157 (4)	0.0249 (5)	-0.0017 (3)	-0.0066 (4)	0.0006 (3)
N1	0.0195 (5)	0.0171 (5)	0.0225 (5)	0.0002 (4)	-0.0011 (4)	0.0039 (4)
N2	0.0209 (5)	0.0164 (5)	0.0236 (6)	0.0011 (4)	-0.0016 (4)	0.0029 (4)
N3	0.0324 (6)	0.0162 (5)	0.0197 (5)	-0.0033 (4)	-0.0008(4)	0.0012 (4)
N4	0.0449 (7)	0.0185 (5)	0.0213 (6)	-0.0102 (5)	-0.0016 (5)	0.0012 (4)
C1	0.0256 (6)	0.0143 (5)	0.0167 (6)	0.0014 (4)	-0.0002 (5)	0.0000 (4)
C2	0.0255 (6)	0.0156 (6)	0.0190 (6)	-0.0012 (4)	-0.0001 (5)	0.0005 (5)
C3	0.0248 (6)	0.0167 (5)	0.0200 (6)	-0.0008(5)	0.0007 (5)	-0.0007 (5)
C4	0.0241 (7)	0.0275 (7)	0.0324 (8)	-0.0017 (5)	-0.0014 (6)	0.0024 (6)
C5	0.0231 (6)	0.0147 (5)	0.0241 (6)	0.0002 (4)	0.0000 (5)	0.0022 (5)
C6	0.0246 (6)	0.0166 (6)	0.0219 (6)	-0.0014 (5)	0.0006 (5)	0.0018 (5)
C7	0.0339 (7)	0.0193 (6)	0.0224 (7)	-0.0040 (5)	0.0005 (5)	0.0014 (5)
C8	0.0647 (11)	0.0249 (7)	0.0238 (7)	-0.0129 (7)	-0.0052 (7)	-0.0002 (6)
С9	0.0236 (6)	0.0141 (5)	0.0233 (6)	0.0005 (4)	0.0021 (5)	0.0019 (4)
C10	0.0266 (6)	0.0227 (6)	0.0255 (7)	-0.0013 (5)	-0.0012 (5)	0.0033 (5)
C11	0.0332 (7)	0.0262 (6)	0.0253 (7)	0.0020 (5)	0.0031 (6)	0.0079 (5)
C12	0.0275 (7)	0.0216 (6)	0.0350 (8)	0.0008 (5)	0.0096 (6)	0.0051 (5)
C13	0.0229 (6)	0.0206 (6)	0.0357 (8)	-0.0004 (5)	0.0013 (6)	0.0010 (5)
C14	0.0245 (6)	0.0198 (6)	0.0258 (7)	0.0009 (5)	-0.0009 (5)	0.0012 (5)
C15	0.0285 (6)	0.0192 (6)	0.0218 (6)	0.0020 (5)	0.0035 (5)	0.0035 (5)
C16	0.0443 (8)	0.0274 (7)	0.0330 (8)	-0.0110 (6)	-0.0079 (7)	0.0083 (6)
C17	0.0509 (9)	0.0276 (7)	0.0381 (9)	-0.0095 (6)	-0.0046 (7)	0.0127 (6)
C18	0.0549 (9)	0.0295 (7)	0.0261 (7)	0.0019 (7)	-0.0006 (7)	0.0088 (6)
C19	0.0753 (12)	0.0302 (7)	0.0265 (8)	-0.0055 (8)	-0.0128 (8)	0.0028 (6)
C20	0.0616 (10)	0.0210 (7)	0.0274 (8)	-0.0076 (7)	-0.0076 (7)	0.0029 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C1	1.2540 (15)	C8—H8C	1.00 (3)
O2—C5	1.2577 (16)	C9—C10	1.3908 (18)
N1—N2	1.3924 (15)	C9—C14	1.3922 (18)
N1-C1	1.3873 (15)	C10—H10	0.962 (17)
N1-C9	1.4182 (16)	C10—C11	1.3870 (19)
N2—H2	0.89 (2)	C11—H11	0.950 (18)
N2-C3	1.3608 (16)	C11—C12	1.388 (2)
N3—N4	1.3848 (15)	C12—H12	0.986 (18)
N3—C5	1.3979 (15)	C12—C13	1.384 (2)
N3—C15	1.4211 (16)	C13—H13	0.982 (18)
N4—H4	0.93 (2)	C13—C14	1.3908 (19)
N4—C7	1.3442 (17)	C14—H14	0.973 (17)
C1—C2	1.4361 (17)	C15—C16	1.3880 (19)
C2—C3	1.3732 (18)	C15—C20	1.385 (2)
C2—C6	1.4638 (17)	C16—H16	0.99 (2)
C3—C4	1.4870 (18)	C16—C17	1.389 (2)

C4—H4A	0.96 (2)	C17—H17	1.01 (2)
C4—H4B	1.01 (2)	C17—C18	1.373 (2)
C4—H4C	1.00 (2)	C18—H18	0.984 (19)
C5—C6	1.4255 (18)	C18—C19	1.382 (2)
C6—C7	1.3739 (18)	С19—Н19	0.97 (2)
C7—C8	1.487 (2)	C19—C20	1.389 (2)
C8—H8A	0.94 (3)	С20—Н20	0.95 (2)
C8—H8B	0.98 (2)		
N2—N1—C9	119.13 (10)	H8A—C8—H8B	110 (2)
C1—N1—N2	109.61 (10)	H8A—C8—H8C	104 (2)
C1—N1—C9	128.07 (10)	H8B—C8—H8C	108 (2)
N1—N2—H2	116.1 (12)	C10—C9—N1	119.46 (11)
C3—N2—N1	107.13 (10)	C10—C9—C14	120.74 (12)
C3—N2—H2	122.7 (12)	C14—C9—N1	119.80 (12)
N4—N3—C5	108.30 (10)	C9—C10—H10	120.3 (10)
N4—N3—C15	121.11 (10)	C11—C10—C9	119.46 (13)
C5—N3—C15	130.03 (11)	C11—C10—H10	120.3 (10)
N3—N4—H4	124.2 (12)	C10—C11—H11	118.9 (10)
C7—N4—N3	108.67 (11)	C10—C11—C12	120.27 (13)
C7—N4—H4	124.8 (12)	C12—C11—H11	120.8 (10)
O1—C1—N1	123.52 (11)	C11—C12—H12	120.1 (10)
O1—C1—C2	131.01 (11)	C13—C12—C11	119.90 (13)
N1—C1—C2	105.45 (10)	C13—C12—H12	120.0 (10)
C1—C2—C6	124.33 (11)	С12—С13—Н13	120.7 (10)
C3—C2—C1	107.32 (11)	C12—C13—C14	120.61 (13)
C3—C2—C6	128.27 (12)	C14—C13—H13	118.7 (10)
N2—C3—C2	110.12 (11)	C9—C14—H14	119.2 (10)
N2—C3—C4	119.75 (11)	C13—C14—C9	118.99 (12)
C2—C3—C4	130.11 (12)	C13—C14—H14	121.7 (10)
C3—C4—H4A	109.2 (12)	C16—C15—N3	120.27 (13)
C3—C4—H4B	110.2 (12)	C20—C15—N3	120.08 (12)
C3—C4—H4C	111.4 (13)	C20—C15—C16	119.63 (13)
H4A—C4—H4B	109.6 (17)	C15—C16—H16	118.3 (13)
H4A—C4—H4C	107.4 (18)	C15—C16—C17	119.58 (14)
H4B—C4—H4C	109.1 (17)	C17—C16—H16	122.1 (13)
O2—C5—N3	123.75 (12)	C16—C17—H17	118.7 (11)
O2—C5—C6	130.37 (11)	C18—C17—C16	121.05 (14)
N3—C5—C6	105.88 (10)	C18—C17—H17	120.2 (11)
C5—C6—C2	125.56 (11)	C17—C18—H18	120.2 (11)
C7—C6—C2	127.07 (12)	C17—C18—C19	119.25 (14)
C7—C6—C5	107.31 (11)	C19—C18—H18	120.6 (11)
N4—C7—C6	109.78 (12)	C18—C19—H19	120.9 (13)
N4—C7—C8	120.43 (12)	C18—C19—C20	120.51 (15)
C6—C7—C8	129.77 (12)	C20—C19—H19	118.6 (13)
С7—С8—Н8А	113.1 (18)	C15—C20—C19	119.94 (14)
С7—С8—Н8В	111.4 (14)	C15—C20—H20	118.5 (13)
С7—С8—Н8С	110.3 (16)	С19—С20—Н20	121.5 (13)

176.71 (13)	C1—C2—C6—C7	110.02 (16)
-0.3 (2)	C2-C6-C7-N4	-175.33 (13)
-3.0 (2)	C2—C6—C7—C8	3.0 (3)
179.71 (14)	C3—C2—C6—C5	116.89 (15)
5.32 (14)	C3—C2—C6—C7	-66.4 (2)
-175.97 (11)	C5—N3—N4—C7	1.98 (15)
-1.56 (14)	C5—N3—C15—C16	-173.56 (14)
-178.61 (11)	C5—N3—C15—C20	8.1 (2)
-179.24 (12)	C5—C6—C7—N4	1.88 (16)
180.00 (11)	C5—C6—C7—C8	-179.78 (16)
-173.60 (11)	C6—C2—C3—N2	174.55 (12)
4.83 (13)	C6—C2—C3—C4	-4.0 (2)
23.01 (16)	C9—N1—N2—C3	-167.76 (11)
-157.62 (11)	C9—N1—C1—O1	-14.3 (2)
-2.41 (16)	C9—N1—C1—C2	164.12 (12)
179.07 (14)	C9—C10—C11—C12	-0.3 (2)
176.64 (12)	C10-C9-C14-C13	-0.64 (19)
-0.62 (14)	C10-C11-C12-C13	-1.4 (2)
-179.85 (14)	C11—C12—C13—C14	2.2 (2)
-179.98 (15)	C12—C13—C14—C9	-1.17 (19)
178.89 (12)	C14—C9—C10—C11	1.40 (19)
-0.81 (14)	C15—N3—N4—C7	174.20 (12)
16.11 (19)	C15—N3—C5—O2	7.6 (2)
-162.19 (14)	C15—N3—C5—C6	-172.10 (12)
-6.34 (13)	C15—C16—C17—C18	-0.2 (3)
-134.57 (13)	C16-C15-C20-C19	1.7 (3)
44.80 (18)	C16—C17—C18—C19	1.8 (3)
-2.35 (14)	C17—C18—C19—C20	-1.6 (3)
179.11 (13)	C18—C19—C20—C15	-0.1 (3)
-66.70 (18)	C20-C15-C16-C17	-1.5 (2)
	$\begin{array}{c} 176.71 \ (13) \\ -0.3 \ (2) \\ -3.0 \ (2) \\ 179.71 \ (14) \\ 5.32 \ (14) \\ -175.97 \ (11) \\ -175.97 \ (11) \\ -175.97 \ (11) \\ -179.24 \ (12) \\ 180.00 \ (11) \\ -179.24 \ (12) \\ 180.00 \ (11) \\ -173.60 \ (11) \\ 4.83 \ (13) \\ 23.01 \ (16) \\ -157.62 \ (11) \\ -2.41 \ (16) \\ 179.07 \ (14) \\ 176.64 \ (12) \\ -0.62 \ (14) \\ -179.85 \ (14) \\ -179.98 \ (15) \\ 178.89 \ (12) \\ -0.81 \ (14) \\ 16.11 \ (19) \\ -162.19 \ (14) \\ -6.34 \ (13) \\ -134.57 \ (13) \\ 44.80 \ (18) \\ -2.35 \ (14) \\ 179.11 \ (13) \\ -66.70 \ (18) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	<i>D</i> —H··· <i>A</i>
N2—H2···O2 ⁱ	0.89 (2)	1.85 (2)	2.7313 (14)	175.1 (18)
N4—H4···O1 ⁱⁱ	0.93 (2)	1.81 (2)	2.7321 (15)	169.3 (18)
С20—Н20…О2	0.95 (2)	2.23 (2)	2.8988 (17)	126.5 (16)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1/2, -y+3/2, -z+1.