Abilene Christian University
Digital Commons @ ACU

Chemistry and Biochemistry

College of Arts and Sciences

7-10-2020

(S)-2-[(4-Fluorophenyl)formamido]-3-phenylpropanoic acid

Kathleen Lee

Luke Turner

Cynthia Powell

Eric W. Reinheimer

Follow this and additional works at: https://digitalcommons.acu.edu/chemistry_biochem

Part of the Chemistry Commons

ISSN 2414-3146

Received 10 June 2020 Accepted 1 July 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; amino acid derivative; solid phase synthesis; hydrogen bonding.

CCDC reference: 1975451

Structural data: full structural data are available from iucrdata.iucr.org

(*S*)-2-[(4-Fluorophenyl)formamido]-3-phenylpropanoic acid

Kathleen S. Lee,^a* Luke Turner,^a Cynthia B. Powell^a and Eric W. Reinheimer^b

^aDepartment of Chemistry and Biochemistry, Abilene Christian University, ACU 28132, Abilene, Texas 79699, USA, and ^bRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas, 77381, USA. *Correspondence e-mail: Kathleen.Lee@acu.edu

The title compound, $C_{16}H_{14}FNO_3$, was synthesized *via* solid phase methods; it exhibits monoclinic (*P*2₁) symmetry at room temperature. The two independent molecules that comprise the asymmetric unit display distinct torsion angles of 173.2 (2) and 72.6 (2)° along the central sp^3 C–N bond. In the crystal, hydrogen bonding through N–H···O contacts couples the asymmetric unit molecules into pairs that align in layers extending parallel to (100) *via* additional O–H···O interactions. The phenyl ring of one independent molecule was found to be disordered over two sets of sites in a 0.55 (3):0.45 (3) ratio.

Structure description

Antibiotic resistance is a major global concern, compounded by the shortage of novel classes of antibiotics in the clinical pipeline (Friedman *et al.*, 2016; Frieri *et al.*, 2017). In order to address the need for new pharmaceuticals and to incorporate drug discovery into the undergraduate curriculum, William Scott and coworkers created the Distributed Drug Discovery (D3) program (Scott & O'Donnell, 2009). D3's virtual catalogs enumerate sets of amino-acid derivatives that have potential biological activity and that may be synthesized through straightforward combinatorial methods (Scott *et al.*, 2009; Abraham *et al.*, 2017). The D3 Lab 2 procedure targets *N*-acyl derivatives of natural amino acids in three steps (Dounay *et al.*, 2019). In this paper, we report the use of the D3 procedure to obtain the title compound as a single stereoisomer.

The compound was synthesized *via* solid phase methods starting from an Fmocprotected phenylalanine bound to a Wang resin, which was purchased from CreoSalus Advanced Chem Tech as the enantiopure S stereoisomer. The stereocenter remains unchanged during the deprotection, benzoylation, cleavage sequence to form the final

lable 1 Hydrogen-bond geometry (Å, °).					
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$		
$O5-H5\cdots O6^i$	0.84	1.83	2.6497 (18)		

$N2-H2\cdots O2$	0.84 (2)	2.06 (2)	2.900 (2)	170 (2)
$N1 - H1A \cdots O4$	0.89(2)	2.16(2)	3.039 (2)	170 (2)
$O1-H1\cdots O3^{ii}$	0.84	1.77	2.607 (2)	177
00 110 000	0.01	1100	2.0.07 (10)	100

 $D - H \cdots A$

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 2; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1.

product. The absolute configuration of the title compound has been established by anomalous dispersion effects in the diffraction measurement.

Two unique molecules comprise the asymmetric unit. Within the molecules the planes containing the benzene rings are rotated with respect to one another by 79.9 $(1)^{\circ}$ (molecule 1, containing N1-F1) and 89.3 (1) $^{\circ}$ (molecule 2, containing N2-F2), as shown in Fig. 1. The phenyl ring in molecule 1 is disordered over two slightly different positions. Interestingly, torsion angles measured at the middle of the molecules are quite different; in molecule 1, the C1-N1-C9-C10 angle is $173.2 (2)^{\circ}$ and in molecule 2, the analogous C17-N2-C25-C26 angle is 72.6 (2)°. The amino-hydrogen atom on each molecule is hydrogen-bonded to the organic-acid carbonyl O atom on the other molecule $(N-H \cdots O \text{ contacts}, \text{ Table 1})$ coupling the molecules in the asymmetric unit so that they are positioned on top of each other with a fluoro-substituted ring above and nearly perpendicular to the unsubstituted ring of the partner molecule [mean dihedral angle between the rings of the two molecules = $87 (3)^{\circ}$]. Fig. 2 shows an overlay of the two distinct molecules, highlighting their conformational differences. As shown in Fig. 3, the coupled asymmetric-unit pairs align in chains parallel to [010] via additional hydrogenbonding interactions between OH organic-acid hydrogen atoms and the amide oxygen atoms in adjacent pairs through the $O-H \cdots O$ contacts listed in Table 1. Layers of chains extending parallel to (100) are visible when the packing is

Figure 1

The asymmetric unit consists of two molecules of the title compound, shown here with displacement ellipsoids drawn at the 50% probability level. The minor component of the disordered phenyl ring is shown in pale blue.

Figure 2 An overlay illustration of the two independent molecules. For molecule 1 only the major component of the disordered phenyl ring is displayed; molecule 2 is shown in purple.

viewed along the b axis. The benzene-ring ends of the asymmetric-unit pairs that project out of each hydrogen-bonded chain occupy the voids between coupled asymmetric-unit pairs in the chain layers above and below, allowing closer packing.

Synthesis and crystallization

50 µmol of S-phenylalanine protected with fluorenylmethyloxycarbonyl (Fmoc) and bound to a Wang resin were placed in a fritted vial with screw caps at both ends. The resin was rinsed with three 3 ml aliquots of N-methyl-2-pyrrolidone (NMP) and three 2 ml aliquots of NMP:piperidine (4:1). The bottom of the vial was capped to prevent the acylating reagents from draining from the vial. To the resin was added 1.0 ml of a solution of p-fluorobenzoic acid (0.25 M) and hydroxybenzotriazole (HOBt, 0.25 M) in NMP and 0.5 ml of 0.5 Mdiisopropylcarbodiimide in NMP. The vial was capped, inverted three times, and allowed to sit. After four days, the vial was uncapped at both ends, and the resin was washed

Figure 3

The packing of the molecules of the title compound in a view along the b axis, showing hydrogen-bonded layers parallel to (100).

sequentially with two 3 ml portions of NMP, two 3 ml portions of tetrahydrofuran, and three 3 ml portions of dichloromethane. The reaction vial was placed over a collection vial, and the resin was washed twice with 2.0 ml of trifluoroacetic acid-dichloromethane-water (35:60:5) and once with 2.0 ml of dichloromethane. The collection vial containing the combined rinses was placed in a vacuum chamber to remove the solvents. Column chromatography (hexanes:acetone, 75/25 v/v) afforded 12.8 mg of the title compound (89% overall yield from Fmoc-Phe-Wang resin). The purified product was crystallized from a dichloromethane solution layered with a solution of heptane and benzene. ¹H NMR (600 MHz, CDCl₃/ CD₃OD) δ 7.73 (*m*, 2H), 7.13 (*m*, 3H), 7.10 (*m*, 4H), 5.05 (*t*, *J* = 5.6 Hz, 1H), 3.27 (*dd*, *J* = 13.8, 5.7 Hz, 1H), 3.21 (*dd*, *J* = 13.8, 5.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃/CD₃OD) δ 172.23, 166.11, 164.09, 135.77, 129.49, 129.43, 129.29, 128.67, 127.26, 115.78, 53.55, 37.78.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The phenyl ring (C11–C16) of molecule 1 was found to be disordered over two sets of sites in a ratio of 0.55 (3):0.45 (3). The AFIX 66 constraint was applied to both parts of the disordered phenyl ring, and the RIGU rigid body restraint was applied to all non-hydrogen atoms in those rings with σ values of 0.001 for the 1–2 and 1–3 distances.

Acknowledgements

NMR data were collected by Dr Joseph Ready and Dr Feng Lin at UT Southwestern Medical Center, Dallas, Texas.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021); Abilene Christian University Office of Undergraduate Research; Abilene Christian University Research Council.

References

- Abraham, M. M., Denton, R. E., Harper, R. W., Scott, W. L., O'Donnell, M. J. & Durrant, J. D. (2017). *Chem. Biol. Drug Des.* **90**, 909–918.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dounay, A. B., O'Donnell, M. J., Samaritoni, J. G., Popiolek, L., Schirch, D., Biernasiuk, A., Malm, A., Lamb, I. W., Mudrack, K., Rivera, D. G., Ojeda, G. M. & Scott, W. L. (2019). J. Chem. Educ. 96, 1731–1737.

Table 2
Experimental details.

Crystal dataC16H14FNO3Chemical formulaC16H14FNO3 M_r 287.28Crystal system, space groupMonoclinic, $P2_1$ Temperature (K)100 a, b, c (Å)9.74134 (5), 9.83313 (4), a, b, c (Å)9.74134 (5), 9.83313 (4), a, b, c (Å)9.82662 (4) V (Å3)1414.06 (1) Z 4Radiation typeCu $K\alpha$ u (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (CrysAlis PRO; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.032 (622Refinement8	
Chemical formula $C_{16}H_{14}FNO_3$ 287.28 M_r 287.28Crystal system, space groupMonoclinic, $P2_1$ 100Temperature (K)100 a, b, c (Å)9.74134 (5), 9.83313 (4), 14.91737 (6) β (°)98.2662 (4) V (Å3)1414.06 (1) Z 4Radiation typeCu $K\alpha$ 0.86 ω (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.032 (622Refinement8.1000	
M_r 287.28Crystal system, space groupMonoclinic, $P2_1$ Temperature (K)100 a, b, c (Å)9.74134 (5), 9.83313 (4), b, c (Å)9.74134 (5), 9.83313 (4), a, b, c (Å)9.82662 (4) V (Å ³)1414.06 (1) Z 4Radiation typeCu $K\alpha$ u (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.032 0.622 R_{int} 0.032 0.622Refinement8	
Crystal system, space groupMonoclinic, P_{2_1} Temperature (K)100 a, b, c (Å)9.74134 (5), 9.83313 (4), b, c (Å)9.74134 (5), 9.83313 (4), b, c (Å)9.82662 (4) V (Å3)1414.06 (1) Z 4Radiation typeCu $K\alpha$ u (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.032 0.622 R_{int} 0.032 0.622Refinement8	
Image: Temperature (K)100 a, b, c (Å)9.74134 (5), 9.83313 (4), b, c (Å)9.74134 (5), 9.83313 (4), b, c (Å)98.2662 (4) V (Å3)1414.06 (1) Z 4Radiation typeCu K α u (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (CrysAlis PRO; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.032 0.622 R_{int} 0.032 0.622Refinement100	
a, b, c (Å) 9.74134 (5), 9.83313 (4), 14.91737 (6) β (°) 98.2662 (4) V (Å ³) 1414.06 (1) Z 4 Radiation type u (mm ⁻¹) 0.86 Crystal size (mm) 0.56 × 0.21 × 0.12 Data collection Rigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2 Absorption correction Gaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 53742, 5671, 5602 R_{int} 0.032 R_{int} 0.622 Refinement 8	
\mathcal{B} (°)98.2662 (4) V (Å3)1414.06 (1) Z 4Radiation typeCu $K\alpha$ u (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.032 (.622Refinement0.032	
$V(Å^3)$ 1414.06 (1) Z 4Radiation typeCu $K\alpha$ u (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionDiffractometerDiffractometerRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) N_{min}, T_{max} 0.452, 1.000No. of measured, independent and 	
Z4Radiation typeCu $K\alpha$ u (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} 0.032 0.622Refinement0.032	
Radiation typeCu $K\alpha$ μ (mm ⁻¹)0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (CrysAlis PRO; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} 0.032 $(sin \ \theta/\lambda)_{max}$ (Å ⁻¹)0.622	
$u \ (mm^{-1})^{1}$ 0.86Crystal size (mm)0.56 × 0.21 × 0.12Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (CrysAlis PRO; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.032 0.622 R_{int} 0.032Refinement0.622	
Crystal size (mm) $0.56 \times 0.21 \times 0.12$ Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (<i>CrysAlis PRO</i> ; Rig OD, 2019) T_{min}, T_{max} $0.452, 1.000$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.032 R_{int} 0.032 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.622	
Data collectionRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (CrysAlis PRO; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53742, 5671, 5602 R_{int} 0.032 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.622	
DiffractometerRigaku Oxford Diffraction Su Nova, Dual, Cu at home/ne AtlasS2Absorption correctionGaussian (CrysAlis PRO; Rig OD, 2019) T_{min}, T_{max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53742, 5671, 5602 R_{int} 0.032 (sin $\theta/\lambda)_{max}$ (Å ⁻¹)Refinement0.622	
Absorption correctionGaussian (CrysAlis PRO; Rig OD, 2019) T_{\min}, T_{\max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53742, 5671, 5602 R_{int} 0.032 $(\sin \theta/\lambda)_{\max}$ (Å ⁻¹)0.622Refinement6000000000000000000000000000000000000	per- ar,
T_{\min}, T_{\max} 0.452, 1.000No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53742, 5671, 5602 R_{int} 0.032 $(\sin \theta/\lambda)_{\max}$ (Å ⁻¹)0.622Refinement	ku
Initial fieldSimilar fieldNo. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53742, 5671, 5602 R_{int} 0.032 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.622Refinement0.032	
$R_{\text{int}} = 0.032$ $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1}) = 0.622$ Refinement	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.028, 0.079, 1.05	
No. of reflections 5671	
No. of parameters 421	
No. of restraints 355	
H-atom treatment H atoms treated by a mixture independent and constraine	of d
$\Lambda_{0} = \Lambda_{0} = (e_{0} \dot{A}^{-3}) = 0.16 = 0.12$	
$\Delta p_{\text{max}}, \Delta p_{\text{min}} (CA) = 0.10, -0.12$ $A \text{ bsolute structure} = Flack x determined using 25%$	
quotients $[(I^+)-(I^-)]/[(I^+)+$ (Parsons <i>et al.</i> , 2013)	<i>[</i> ⁻)]
Absolute structure parameter -0.05 (3)	

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

- Friedman, N. D., Temkin, E. & Carmeli, Y. (2016). Clin. Microbiol. Infect. 22, 416–422.
- Frieri, M., Kumar, K. & Boutin, A. (2017). J. Infect. Publ. Heal. 10, 369–378.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Scott, W. L., Alsina, J., Audu, C. O., Babaev, E., Cook, L., Dage, J. L., Goodwin, L. A., Martynow, J. G., Matosiuk, D., Royo, M., Smith, J. G., Strong, A. T., Wickizer, K., Woerly, E. M., Zhou, Z. & O'Donnell, M. J. (2009). J. Comb. Chem. 11, 14–33.
- Scott, W. L. & O'Donnell, M. J. (2009). J. Comb. Chem. 11, 3-13.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2020). **5**, x200897 [https://doi.org/10.1107/S2414314620008974]

(S)-2-[(4-Fluorophenyl)formamido]-3-phenylpropanoic acid

Kathleen S. Lee, Luke Turner, Cynthia B. Powell and Eric W. Reinheimer

(S)-2-[(4-Fluorophenyl)formamido]-3-phenylpropanoic acid

Crystal data

C₁₆H₁₄FNO₃ $M_r = 287.28$ Monoclinic, P2₁ a = 9.74134 (5) Å b = 9.83313 (4) Å c = 14.91737 (6) Å $\beta = 98.2662$ (4)° V = 1414.06 (1) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 5.2387 pixels mm⁻¹ ω scans Absorption correction: gaussian (*CrysAlis PRO*; Rigaku OD, 2019)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.079$ S = 1.055671 reflections 421 parameters 355 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement F(000) = 600 $D_x = 1.349 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 40752 reflections $\theta = 4.6-73.5^{\circ}$ $\mu = 0.86 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.56 \times 0.21 \times 0.12 \text{ mm}$

 $T_{\min} = 0.452, T_{\max} = 1.000$ 53742 measured reflections
5671 independent reflections
5602 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 73.7^{\circ}, \theta_{\text{min}} = 4.6^{\circ}$ $h = -11 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0473P)^{2} + 0.1344P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.12 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0068 (5) Absolute structure: Flack *x* determined using 2580 quotients [(*I*⁺)-(*I*)]/[(*I*⁺)+(*I*)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.05 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O4	0.55896 (13)	0.60198 (15)	0.89050 (9)	0.0473 (3)	
05	0.38969 (13)	0.57893 (16)	0.97497 (8)	0.0464 (3)	
Н5	0.4369	0.6359	1.0082	0.070*	
O3	0.47124 (17)	0.78037 (16)	0.57577 (9)	0.0532 (4)	
O2	0.49339 (14)	0.45890 (15)	0.60468 (9)	0.0477 (3)	
N2	0.43835 (15)	0.38567 (14)	0.78447 (10)	0.0362 (3)	
O6	0.51088 (15)	0.27881 (15)	0.91538 (8)	0.0474 (3)	
01	0.64625 (15)	0.49117 (17)	0.50928 (9)	0.0543 (4)	
H1	0.6083	0.4219	0.4837	0.081*	
F1	0.14855 (17)	1.06807 (19)	0.85687 (12)	0.0825 (5)	
F2	0.83586 (18)	-0.06630 (18)	0.65856 (14)	0.0876 (5)	
N1	0.59204 (17)	0.69008 (16)	0.69952 (10)	0.0401 (3)	
C18	0.59847 (18)	0.19811 (17)	0.78350 (12)	0.0387 (4)	
C25	0.35323 (17)	0.48177 (16)	0.82684 (10)	0.0334 (3)	
H25	0.3192	0.5505	0.7794	0.040*	
C8	0.59457 (18)	0.51500 (18)	0.58414 (11)	0.0370 (3)	
C24	0.44635 (16)	0.55878 (17)	0.90178 (10)	0.0334 (3)	
C17	0.51291 (18)	0.28963 (17)	0.83285 (11)	0.0360 (3)	
C23	0.5622 (2)	0.16621 (18)	0.69210 (14)	0.0439 (4)	
H23	0.4815	0.2053	0.6587	0.053*	
C1	0.4897 (2)	0.76851 (18)	0.65954 (11)	0.0399 (4)	
C27	0.11085 (18)	0.50384 (19)	0.87908 (11)	0.0380 (3)	
C2	0.3995 (2)	0.84212 (18)	0.71611 (12)	0.0408 (4)	
C26	0.22470 (19)	0.41301 (18)	0.85338 (13)	0.0421 (4)	
H26A	0.1839	0.3551	0.8021	0.050*	
H26B	0.2551	0.3519	0.9052	0.050*	
C22	0.6434 (2)	0.0778 (2)	0.64961 (16)	0.0532 (5)	
H22	0.6198	0.0564	0.5872	0.064*	
C32	-0.0009(2)	0.4410 (2)	0.91043 (13)	0.0488 (4)	
H32	-0.0039	0.3446	0.9139	0.059*	
C9	0.67988 (19)	0.61896 (19)	0.64353 (11)	0.0383 (4)	
Н9	0.7187	0.6866	0.6038	0.046*	
C19	0.7173 (2)	0.1409 (2)	0.83170 (15)	0.0495 (4)	
H19	0.7435	0.1631	0.8938	0.059*	
C10	0.8002 (2)	0.5494 (2)	0.70428 (12)	0.0483 (4)	
H10C	0.8406	0.6155	0.7507	0.058*	0.45 (3)
H10D	0.7619	0.4732	0.7363	0.058*	0.45 (3)
H10A	0.7621	0.4755	0.7385	0.058*	0.55 (3)
H10B	0.8443	0.6165	0.7488	0.058*	0.55 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C21 0.7572 (2) 0.0226 (2) 0.69956 (18) 0.	.0567 (5)
C28 0.1109 (2) 0.6446 (2) 0.87296 (14) 0.	.0457 (4)
H28 0.1847 0.6897 0.8500 0.	.055*
C31 -0.1082 (2) 0.5172 (3) 0.93667 (15) 0.	.0586 (5)
H31 -0.1840 0.4727 0.9577 0.	.070*
C4 0.3585 (2) 0.9521 (2) 0.85435 (15) 0.	.0539 (5)
H4 0.3875 0.9752 0.9160 0.	.065*
C7 0.2683 (2) 0.8821 (2) 0.67540 (14) 0.	.0514 (4)
H7 0.2366 0.8567 0.6145 0.	.062*
C29 0.0034 (2) 0.7198 (2) 0.90028 (15) 0.	.0553 (5)
H29 0.0051 0.8163 0.8966 0.	.066*
C3 0.4435 (2) 0.8773 (2) 0.80636 (13) 0.	.0461 (4)
H3 0.5325 0.8497 0.8350 0.	.055*
C16B 0.9064 (12) 0.3556 (8) 0.6455 (9) 0.	.063 (2) 0.45 (3)
H16B 0.8344 0.3050 0.6667 0.	.076* 0.45 (3)
C15B 1.0046 (15) 0.2896 (8) 0.6023 (8) 0.	.071 (2) 0.45 (3)
H15B 0.9998 0.1938 0.5939 0.	.085* 0.45 (3)
C14B 1.1099 (13) 0.3636 (14) 0.5712 (6) 0.	.064 (2) 0.45 (3)
H14B 1.1770 0.3184 0.5417 0.	.077* 0.45 (3)
C13B 1.1169 (8) 0.5037 (13) 0.5835 (7) 0.	.073 (2) 0.45 (3)
H13B 1.1889 0.5543 0.5623 0.	.087* 0.45 (3)
C12B 1.0187 (10) 0.5698 (8) 0.6268 (7) 0.	.054 (2) 0.45 (3)
H12B 1.0235 0.6655 0.6351 0.	.065* 0.45 (3)
C11B 0.9134 (10) 0.4957 (8) 0.6578 (9) 0.	.0461 (19) 0.45 (3)
C6 0.1834 (2) 0.9586 (3) 0.72273 (17) 0.	.0600 (5)
H6 0.0943 0.9871 0.6948 0.	.072*
C5 0.2313 (2) 0.9922 (2) 0.81097 (16) 0.	.0565 (5)
C20 0.7975 (2) 0.0519 (3) 0.78943 (18) 0.	.0608 (5)
H20 0.8785 0.0119 0.8219 0.	.073*
C30 -0.1054 (2) 0.6563 (3) 0.93251 (15) 0.	.0580 (5)
H30 -0.1780 0.7084 0.9517 0.	.070*
C16A 1.0068 (9) 0.5848 (5) 0.6299 (7) 0.	.068 (3) 0.55 (3)
H16A 0.9943 0.6783 0.6424 0.	.082* 0.55 (3)
C15A 1.1190 (7) 0.5437 (10) 0.5885 (6) 0.	.0672 (17) 0.55 (3)
H15A 1.1832 0.6092 0.5728 0.	.081* 0.55 (3)
C14A 1.1373 (7) 0.4068 (12) 0.5702 (5) 0.	.0602 (16) 0.55 (3)
H14A 1.2140 0.3788 0.5419 0.	.072* 0.55 (3)
C13A 1.0434 (10) 0.3110 (7) 0.5931 (6) 0.	.0617 (17) 0.55 (3)
H13A 1.0559 0.2175 0.5806 0.	.074* 0.55 (3)
C12A 0.9312 (9) 0.3521 (6) 0.6345 (7) 0.	.0571 (16) 0.55 (3)
H12A 0.8670 0.2866 0.6502 0.	.068* 0.55 (3)
C11A 0.9129 (8) 0.4889 (7) 0.6528 (7) 0.	.0437 (15) 0.55 (3)
H1A 0.594 (2) 0.665 (2) 0.7566 (16) 0.	.047 (6)*
H2 0.452 (2) 0.397 (2) 0.7303 (16) 0.	.044 (6)*

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O4	0.0360 (6)	0.0599 (8)	0.0469 (7)	-0.0066 (5)	0.0088 (5)	-0.0043 (6)
05	0.0425 (6)	0.0618 (8)	0.0359 (6)	-0.0085 (6)	0.0089 (5)	-0.0125 (6)
O3	0.0718 (10)	0.0542 (8)	0.0339 (6)	0.0109 (7)	0.0087 (6)	0.0057 (6)
O2	0.0519 (7)	0.0538 (8)	0.0388 (6)	-0.0108 (6)	0.0115 (5)	-0.0034 (5)
N2	0.0439 (8)	0.0371 (7)	0.0288 (6)	0.0068 (6)	0.0089 (5)	0.0016 (5)
O6	0.0582 (8)	0.0501 (7)	0.0348 (6)	0.0137 (6)	0.0094 (5)	0.0083 (5)
01	0.0544 (8)	0.0741 (10)	0.0366 (6)	-0.0145 (7)	0.0135 (6)	-0.0184 (6)
F1	0.0859 (10)	0.0780 (10)	0.0923 (10)	0.0130 (8)	0.0431 (8)	-0.0129 (9)
F2	0.0745 (10)	0.0735 (10)	0.1229 (13)	0.0176 (8)	0.0420 (9)	-0.0265 (9)
N1	0.0499 (8)	0.0421 (7)	0.0286 (6)	-0.0001 (6)	0.0073 (6)	-0.0007 (6)
C18	0.0401 (8)	0.0325 (7)	0.0448 (8)	0.0001 (6)	0.0108 (6)	0.0036 (6)
C25	0.0363 (7)	0.0331 (7)	0.0308 (7)	0.0035 (6)	0.0052 (6)	0.0006 (6)
C8	0.0404 (8)	0.0428 (8)	0.0277 (7)	0.0012 (6)	0.0043 (6)	0.0015 (6)
C24	0.0333 (7)	0.0344 (7)	0.0324 (7)	0.0032 (6)	0.0047 (6)	0.0013 (6)
C17	0.0383 (8)	0.0346 (7)	0.0356 (7)	0.0000 (6)	0.0066 (6)	0.0027 (6)
C23	0.0464 (9)	0.0369 (8)	0.0492 (9)	0.0001 (7)	0.0104 (7)	-0.0049 (7)
C1	0.0498 (9)	0.0356 (8)	0.0347 (7)	-0.0046 (7)	0.0076 (6)	0.0018 (6)
C27	0.0348 (8)	0.0444 (8)	0.0340 (8)	-0.0006 (6)	0.0021 (6)	-0.0025 (6)
C2	0.0494 (9)	0.0346 (8)	0.0397 (8)	-0.0052 (7)	0.0108 (6)	0.0021 (6)
C26	0.0385 (8)	0.0357 (8)	0.0528 (10)	-0.0026 (6)	0.0095 (7)	-0.0025 (7)
C22	0.0548 (10)	0.0434 (9)	0.0649 (11)	-0.0047 (8)	0.0206 (8)	-0.0140 (9)
C32	0.0439 (9)	0.0611 (11)	0.0419 (9)	-0.0029 (8)	0.0078 (7)	0.0062 (8)
C9	0.0429 (8)	0.0433 (8)	0.0290 (7)	-0.0032 (7)	0.0067 (6)	-0.0016 (6)
C19	0.0444 (9)	0.0516 (10)	0.0537 (10)	0.0078 (8)	0.0111 (8)	0.0080 (8)
C10	0.0443 (9)	0.0643 (11)	0.0348 (8)	0.0009 (8)	0.0012 (7)	-0.0016 (8)
C21	0.0515 (10)	0.0446 (10)	0.0796 (12)	0.0025 (8)	0.0283 (9)	-0.0072 (9)
C28	0.0397 (9)	0.0441 (9)	0.0533 (10)	0.0010 (7)	0.0064 (8)	-0.0053 (7)
C31	0.0433 (10)	0.0867 (13)	0.0474 (10)	0.0006 (9)	0.0124 (8)	-0.0001 (10)
C4	0.0642 (11)	0.0496 (10)	0.0509 (10)	-0.0098 (8)	0.0190 (8)	-0.0115 (8)
C7	0.0518 (10)	0.0580 (11)	0.0453 (9)	-0.0001 (8)	0.0104 (7)	0.0068 (8)
C29	0.0485 (10)	0.0570 (11)	0.0589 (12)	0.0110 (8)	0.0026 (9)	-0.0134 (9)
C3	0.0527 (10)	0.0421 (9)	0.0443 (9)	-0.0075 (8)	0.0093 (7)	-0.0043 (7)
C16B	0.066 (4)	0.057 (3)	0.071 (4)	0.003 (2)	0.024 (3)	-0.004 (2)
C15B	0.075 (5)	0.055 (3)	0.090 (4)	0.002 (2)	0.036 (4)	-0.002 (3)
C14B	0.072 (4)	0.049 (4)	0.078 (4)	0.004 (3)	0.033 (3)	-0.004 (3)
C13B	0.075 (3)	0.050 (4)	0.103 (5)	0.000 (3)	0.049 (4)	-0.005 (3)
C12B	0.052 (3)	0.053 (3)	0.058 (4)	0.001 (2)	0.014 (3)	-0.006 (2)
C11B	0.045 (3)	0.057 (3)	0.036 (4)	0.0017 (18)	0.002 (3)	-0.002 (2)
C6	0.0547 (11)	0.0649 (13)	0.0633 (11)	0.0081 (10)	0.0183 (9)	0.0095 (9)
C5	0.0616 (11)	0.0490 (10)	0.0643 (11)	-0.0014 (9)	0.0274 (9)	-0.0010 (9)
C20	0.0477 (10)	0.0570 (11)	0.0810 (13)	0.0138 (9)	0.0205 (9)	0.0074 (10)
C30	0.0442 (10)	0.0827 (13)	0.0471 (10)	0.0104 (9)	0.0070 (8)	-0.0144 (9)
C16A	0.063 (3)	0.057 (3)	0.092 (6)	-0.006 (2)	0.031 (4)	-0.006 (2)
C15A	0.063 (3)	0.056 (3)	0.088 (4)	-0.009 (2)	0.029 (3)	-0.007 (2)
C14A	0.056 (3)	0.057 (3)	0.071 (3)	-0.008(2)	0.023 (2)	-0.002(3)

data reports

C13A	0.059 (3)	0.048 (2)	0.083 (4)	-0.0027 (19)	0.029 (2)	0.000 (2)
C12A	0.054 (3)	0.049 (2)	0.072 (4)	-0.0034 (16)	0.023 (3)	-0.0009 (18)
C11A	0.041 (2)	0.051 (2)	0.037 (3)	-0.0016 (15)	-0.001 (2)	-0.0007 (18)

Geometric parameters (Å, °)

O4—C24	1.210 (2)	C10—H10A	0.9900
O5—H5	0.8400	C10—H10B	0.9900
O5—C24	1.307 (2)	C10-C11B	1.482 (6)
O3—C1	1.242 (2)	C10-C11A	1.546 (5)
O2—C8	1.207 (2)	C21—C20	1.372 (4)
N2—C25	1.460 (2)	C28—H28	0.9500
N2—C17	1.338 (2)	C28—C29	1.391 (3)
N2—H2	0.84 (2)	C31—H31	0.9500
O6—C17	1.239 (2)	C31—C30	1.369 (4)
O1—H1	0.8400	C4—H4	0.9500
O1—C8	1.310 (2)	C4—C3	1.382 (3)
F1—C5	1.354 (3)	C4—C5	1.371 (3)
F2—C21	1.364 (2)	С7—Н7	0.9500
N1—C1	1.332 (2)	C7—C6	1.384 (3)
N1—C9	1.457 (2)	С29—Н29	0.9500
N1—H1A	0.89 (2)	C29—C30	1.375 (3)
C18—C17	1.491 (2)	С3—Н3	0.9500
C18—C23	1.394 (3)	C16B—H16B	0.9500
C18—C19	1.390 (3)	C16B—C15B	1.3900
С25—Н25	1.0000	C16B—C11B	1.3900
C25—C24	1.534 (2)	C15B—H15B	0.9500
C25—C26	1.525 (2)	C15B—C14B	1.3900
С8—С9	1.520 (2)	C14B—H14B	0.9500
С23—Н23	0.9500	C14B—C13B	1.3900
C23—C22	1.388 (3)	C13B—H13B	0.9500
C1—C2	1.490 (3)	C13B—C12B	1.3900
C27—C26	1.516 (3)	C12B—H12B	0.9500
C27—C32	1.390 (3)	C12B—C11B	1.3900
C27—C28	1.387 (3)	С6—Н6	0.9500
C2—C7	1.391 (3)	C6—C5	1.372 (3)
C2—C3	1.396 (3)	С20—Н20	0.9500
C26—H26A	0.9900	С30—Н30	0.9500
C26—H26B	0.9900	C16A—H16A	0.9500
С22—Н22	0.9500	C16A—C15A	1.3900
C22—C21	1.357 (3)	C16A—C11A	1.3900
С32—Н32	0.9500	C15A—H15A	0.9500
C32—C31	1.388 (3)	C15A—C14A	1.3900
С9—Н9	1.0000	C14A—H14A	0.9500
C9—C10	1.536 (3)	C14A—C13A	1.3900
С19—Н19	0.9500	C13A—H13A	0.9500
C19—C20	1.384 (3)	C13A—C12A	1.3900
C10—H10C	0.9900	C12A—H12A	0.9500

C10—H10D	0.9900	C12A—C11A	1.3900
С24—О5—Н5	109.5	C11A—C10—H10B	108.6
C25—N2—H2	120.2 (16)	F2-C21-C20	118.2 (2)
C17—N2—C25	121.44 (14)	C22—C21—F2	118.5 (2)
C17—N2—H2	117.7 (16)	C22—C21—C20	123.3 (2)
C8—O1—H1	109.5	C27—C28—H28	119.9
C1—N1—C9	118.99 (14)	C27—C28—C29	120.3 (2)
C1—N1—H1A	120.1 (15)	C29—C28—H28	119.9
C9—N1—H1A	119.1 (15)	C32—C31—H31	119.8
C23—C18—C17	122.54 (16)	$C_{30} - C_{31} - C_{32}$	120.4 (2)
C19 - C18 - C17	118.14 (17)	C30—C31—H31	119.8
C19-C18-C23	119 32 (17)	C3—C4—H4	120.8
N2-C25-H25	106.4	C5-C4-H4	120.8
$N_2 - C_{25} - C_{24}$	108.77 (13)	$C_5 - C_4 - C_3$	120.0 118.5(2)
$N_2 - C_{25} - C_{26}$	111 36 (14)	C2—C7—H7	119.7
$C_{24} - C_{25} - H_{25}$	106.4	$C_{6} - C_{7} - C_{2}^{7}$	120.7(2)
$C_{24} = C_{25} = H_{25}$	106.4	С6-С7-Н7	110.7 (2)
$C_{20} = C_{25} = C_{24}$	116.82 (14)	C_{28} C_{29} H_{29}	119.7
02-08-01	124 23 (16)	$C_{20} = C_{20} = C_{20} = C_{20}$	120.8 (2)
02 - 03 - 01 02 - 03 - 01	123.89 (15)	$C_{30} - C_{29} - H_{29}$	119.6
02 - 03 - 09	111 86 (15)	C2_C3_H3	119.0
$04 - C^{24} - 05$	124 25 (16)	$C_2 = C_3 = C_2$	119.7 120.5(2)
$04 - C^{24} - C^{25}$	124.23(10) 121.64(15)	C4 - C3 - H3	110.7
05 C24 C25	121.04(13) 114.01(14)	$C_{1} = C_{1} = H_{1}$	120.0
$N_{2} = C_{2} + C_{2}$	117.01(14) 117.28(14)	C15B $C16B$ $C11B$	120.0
06 C17 N2	120 70 (16)	C11B C16B H16B	120.0
06 - 017 - 018	120.79(10) 121.93(15)	C16B C15B H15B	120.0
$C_{18} C_{23} H_{23}$	121.95 (15)	C_{14}^{14} C_{15}^{15} C_{16}^{16}	120.0
$C_{10} - C_{23} - C_{123}$	119.8	C14B $C15B$ $H15B$	120.0
$C_{22} = C_{23} = C_{18}$	110.8	C15B $C14B$ $H14B$	120.0
$C_{22} - C_{23} - H_{23}$	119.8	C15B $C14B$ $C13B$	120.0
03-01-02	119.71(17) 120.83(17)	C13B-C14B-H14B	120.0
N1 C1 C2	110.65 (17)	C1/B $C13B$ $H13B$	120.0
$C_{32} - C_{27} - C_{26}$	117.40 (13)	C12B-C13B-C14B	120.0
C_{28} C_{27} C_{20}	117.39(17) 124.34(17)	C12B $C13B$ $H13B$	120.0
$C_{20} = C_{27} = C_{20}$	118 28 (19)	C13B $C12B$ $H12B$	120.0
$C_{20} = C_{27} = C_{32}$	118.20(17) 118.01(17)	C_{13B} C_{12B} C_{11B}	120.0
$C_{7}^{}C_{2}^{}C_{3$	119.05 (19)	C11B $C12B$ $H12B$	120.0
$C_{3} - C_{2} - C_{1}$	122 88 (18)	C16B-C11B-C10	112.0.0
$C_{2}^{-} C_{2}^{-} C_{1}^{-} H_{2}^{-} G_{4}^{-}$	107.9	C12B-C11B-C10	112.9 (0)
$C_{25} - C_{26} - H_{26} R_{26}$	107.9	C12B $C11B$ $C16B$	127.1 (0)
$C_{23} = C_{20} = \Pi_{20B}$	107.5	C7_C6_H6	120.0
$C_{27} - C_{26} - H_{26A}$	107.9	$C_{5} - C_{6} - C_{7}$	120.0 118.4(2)
C27_C26_H26R	107.9	C5-C6-H6	120.8
$H_{26} = C_{26} = H_{26}$	107.2	F1-C5-C4	118 9 (2)
C23_C22_H22	120.9	F1	118.3 (2)
C_{21} C_{22} C_{23} C_{23}	118 3 (2)	C4-C5-C6	110.3(2) 1220(2)
021 - 022 - 023	110.3 (2)		122.7 (2)

C21—C22—H22	120.9	С19—С20—Н20	120.8
С27—С32—Н32	119.6	C21—C20—C19	118.5 (2)
C31—C32—C27	120.8 (2)	С21—С20—Н20	120.8
С31—С32—Н32	119.6	C31—C30—C29	119.4 (2)
N1—C9—C8	109.88 (14)	С31—С30—Н30	120.3
N1—C9—H9	108.9	С29—С30—Н30	120.3
N1-C9-C10	109.69 (14)	C15A—C16A—H16A	120.0
С8—С9—Н9	108.9	C15A—C16A—C11A	120.0
C8—C9—C10	110.57 (16)	C11A—C16A—H16A	120.0
С10—С9—Н9	108.9	C16A—C15A—H15A	120.0
C18—C19—H19	119.9	C14A—C15A—C16A	120.0
C20—C19—C18	120.2 (2)	C14A—C15A—H15A	120.0
С20—С19—Н19	119.9	C15A—C14A—H14A	120.0
C9—C10—H10C	108.3	C15A—C14A—C13A	120.0
C9—C10—H10D	108.3	C13A—C14A—H14A	120.0
C9—C10—H10A	108.6	C14A—C13A—H13A	120.0
C9—C10—H10B	108.6	C12A—C13A—C14A	120.0
C9—C10—C11A	114.5 (5)	C12A—C13A—H13A	120.0
H10C—C10—H10D	107.4	C13A—C12A—H12A	120.0
H10A—C10—H10B	107.6	C13A—C12A—C11A	120.0
C11B—C10—C9	116.0 (6)	C11A—C12A—H12A	120.0
C11B—C10—H10C	108.3	C16A—C11A—C10	113.7 (5)
C11B—C10—H10D	108.3	C12A—C11A—C10	126.2 (5)
C11A-C10-H10A	108.6	C12A—C11A—C16A	120.0

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
0.84	1.83	2.6497 (18)	163
0.84	1.77	2.607 (2)	177
0.89 (2)	2.16 (2)	3.039 (2)	170 (2)
0.84 (2)	2.06 (2)	2.900 (2)	170 (2)
	<i>D</i> —H 0.84 0.84 0.89 (2) 0.84 (2)	D—H H···A 0.84 1.83 0.84 1.77 0.89 (2) 2.16 (2) 0.84 (2) 2.06 (2)	D—H H···A D···A 0.84 1.83 2.6497 (18) 0.84 1.77 2.607 (2) 0.89 (2) 2.16 (2) 3.039 (2) 0.84 (2) 2.06 (2) 2.900 (2)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+2; (ii) -*x*+1, *y*-1/2, -*z*+1.