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ABSTRACT 
As automated tools for grading programming assignments become 
more widely used, it is imperative that we better understand how 
students are utilizing them. Other researchers have provided 
helpful data on the role automated assessment tools (AATs) have 
played in the classroom. In order to investigate improved 
practices in using AATs for student learning, we sought to better 
understand how students iteratively modify their programs toward 
a solution by analyzing more than 45,000 student submissions 
over 7 semesters in an introductory (CS1) programming course. 
The resulting metrics allowed us to study what steps students took 
toward solutions for programming assignments. This paper 
considers the incremental changes students make and the 
correlating score between sequential submissions, measured by 
metrics including source lines of code, cyclomatic (McCabe) 
complexity, state space, and the 6 Halstead measures of 
complexity of the program. We demonstrate the value of 
throttling and show that generating software metrics for analysis 
can serve to help instructors better guide student learning. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computers and Information 
Science Education – computer science education, information 
systems education, self-assessment.  

General Terms 
Experimentation 

Keywords 
computer science education; computer aided instruction; 
automated feedback; automated assessment tools 

   

1. INTRODUCTION 
One challenge facing instructors of computer programming is 
identifying how students learn the material through hands-on 
practice that takes place beyond the instructor’s observation, often 
outside the classroom. 

A better understanding of how students iteratively modify their 
programs toward a solution can help us improve programming 
instruction over time. Examining a final submission can 
determine if a student eventually created a properly working 
program but does not indicate how efficiently or systematically he 
or she approached the problem. 

This paper examines data collected from more than 45,000 
student submissions over 7 semesters in an introductory (CS1) 
programming course. Each semester, we gave students 75 C++ 
programming assignments, increasing in difficulty over the course 
of the semester. Students submitted their work to an online 
system, Athene (created in-house), which stored, compiled, and 
ran each submission against a suite of specific test cases and 
carefully generated random test cases. The Athene system then 
automatically scored each submission, so students received 
feedback immediately. Programs that did not pass the entire test 
suite received either a compile error message or information about 
one or more failed test cases as feedback. For failed test cases, 
students received a report of their input, the expected output, and 
the actual output from their program. Students had the 
opportunity to modify and resubmit their program in an attempt to 
improve their grade. A student session consisted of all 
submissions by one student for a given problem. There was no 
limit on the number of submissions that a student could attempt 
until the deadline, although we experimented with “throttling,” a 
technique that limited a student's attempted solutions within a 
rolling 15-minute time period. This paper also considers the 
effects of this throttling on submission behavior. 

With this approach, we intend to encourage students to complete 
each assignment, overcoming early errors to eventually reach a 
final correct solution. Automated scoring is made possible by 
preprocessing and other source modifications, then compiling and 
linking with both standard and specialized libraries. The system 
scores student submissions by direct inspection of required 
features (such as functions) and validation of program output. 

We look more closely at two key moments in each student session 
in order to see the amount of change and meaningful progress that 
takes place (1) between a student’s first and second submissions 
and (2) between a student’s first and last submissions. In our 
courses, 83% of student sessions reach a score of 100%. 
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2. RELATED WORK 
Automated assessment tools (AAT) have been in use since 1960 
[6]. Ala-Mutka [3], Douce [5], and Ihantola [7] all offer good 
reviews of the capabilities of tools that have come into existence 
since. Other relevant tools include ALOHA [1], Style++ [2], JUG 
[4], BlueJ [8], Autograder [9], ClockIt [10], Fitchfork [11], 
Mooshak [12], Bottlenose [13], AutoLep [14], and AutogradeMe 
[15]. We provide a more specific review of selected research 
below, as comparable examples of automated assessment tools 
(AATs) provide important context in considering our Athene 
AAT. 

In June 2005, Kirsti M. Ala-Mutka surveyed a range of 
assessment tools available at that time, reviewing their abilities in 
dynamic testing to construct a secure running environment and 
check program functionality, efficiency, and student testing skills; 
and in static testing to check coding style and programming 
errors, collect software metrics, and assess design [3]. In 
September 2005, Christopher Douce, et al., provided a historical 
overview of the development of AATs and a survey of related 
research, concluding with a series of useful criteria for evaluating 
such tools, including whether the system “does what it is 
supposed to do,” whether “it is liked by its users,” and whether “it 
helps students become more proficient at programming” [5]. In 
2010, Petri Ihantola, et al., followed up with a review of AAT 
development between 2006–2010, determining that the most 
significant differences among programs had to do with “how tests 
are defined, how resubmissions are handled, and how the security 
is guaranteed” [7]. 

Since the publication of these surveys, several key papers have 
devoted expanded attention to more recent programs. For 
example, Mark Sherman, et al., looked at the web-based 
Bottlenose framework and considered how students responded to 
instant automated feedback in contrast to time-delayed instructor 
feedback, finding that students made 50% more submissions per 
assignment when using the AAT. Sherman’s article does not 
discuss final submission quality with or without the AAT, but 
does note the straightforward effect that with the AAT, students 
continue to modify and re-submit assignments, presumably in 
response to the system’s feedback—an advantage in a course 
where they might otherwise submit several assignments before 
receiving instructor feedback [13]. The article does not go into 
detail regarding what Bottlenose assesses in providing feedback; 
for examples of how such programs work, we can look at papers 
including those from Manuel Rubio-Sánchez, et al. [12] and 
Tiantian Wang, et al. [14]. 

Rubio-Sánchez’s group reviewed the widely available Mooshak 
system, using both qualitative and quantitative analysis to 
evaluate its effectiveness in student learning. Responding to 
earlier studies that had noted a negative correlation between the 
introduction of Mooshak and student drop-out rates, Rubio-
Sánchez’s group observed that those studies had not held other 
variables constant—in particular, the studies had changed 
teaching methodology simultaneously with introducing Mooshak. 
In their study, then, Rubio-Sánchez’s group included both test and 
control groups in the form of courses with near-identical syllabi 
and teaching methodologies, some of which used Mooshak and 
some of which did not. Qualitatively, students self-reported 
appreciating instant feedback but had complaints about Mooshak 
specifically, because while it is effective in assessing whether a 
program has succeeded or failed, it does not provide feedback to 
help students make changes along the way. The Mooshak tool 
was originally created for use in programming contests and still 

lacks features present in many tools designed for use in courses. 
Holding other factors constant, Rubio-Sánchez’s group 
did not find a statistical change in the dropout rate of courses 
using Mooshak. 

In contrast, Wang’s group wrote about AutoLEP, an AAT they 
developed at the Harbin Institute of Technology in Heilongjiang, 
China, which combines static analysis with dynamic testing to 
provide students with location-specific feedback on the syntactic, 
structural, and logical features in their programs. AutoLEP seems 
more like Bottlenose in allowing for feedback and multiple 
submissions, but with the apparent advantage of more precision 
due to its simultaneous static and dynamic feedback.  

The issue of whether AATs ought to allow for multiple 
submissions comes up again in Vrada Pieterse’s paper on the use 
of AATs—in particular, his group’s Fitchfork software—in 
massive open online courses (MOOCs) that teach programming. 
Pieterse argues that throttling (limiting the number of submissions 
per assignment) is inappropriate in a MOOC environment in part 
because the open enrollment format means students are working 
voluntarily and should have the opportunity to use AATs for 
repeated revisions as needed to learn the material. A correlative 
argument, however, is that unlimited submissions carries a risk to 
the traditional, credit-based classroom where students may be 
more tempted to “game the system” in an attempt to get a desired 
grade rather than to master learning the material [11]. Such a 
conjecture corresponds to an observation by Ihantola’s group, 
who write, “we believe that the very fact that the assessment is 
automatic is likely to change how some students approach the 
exercise. Knowingly submitting a weak or even incorrect solution 
that gets accepted by a machine is quite likely more socially 
acceptable than trying to cheat a person.” Pieterse’s paper, then, 
raises the challenge to AAT developers to consider an appropriate 
level of throttling for the system’s target user environment. 

Overall, these articles point to a series of features relevant in 
developing AATs, including secure running environments 
(sandboxes), static and dynamic testing, and resubmissions and 
throttling. In our Athene program, we chose to give students 
feedback primarily from dynamic testing while running static 
analysis later for examining its usefulness. We also implemented 
a throttling rule for several semesters to see how that changed 
student behavior.  

3. METHODOLOGY 

3.1 Population Characterization 
We collected data from 290 students in a Programming I course 
over seven semesters. We taught the course using the C++ 
programming language. Our curriculum is a late objects 
curriculum and subject matter in the course is typical of a CS1 
course, including input/output, basic data types, decision 
structures, repetition, functions, and arrays. 

The course serves primarily as a first programming course 
required of Computer Science majors, but students also include 
majors in Engineering, Physics, Mathematics, Information 
Technology, and other related disciplines. 

3.2 Description of Data Collected 
Each semester, we give students 75 programming assignments for 
homework, most of which are completed outside of class. The 
data included in this paper comes from all 75 unique assignments. 
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The students receive their assignments through the Athene online 
automated system.  

Figure 1 shows a representative assignment, typically assigned in 
the third week of a 15-week semester, shortly after introducing 
decision structures. In this case, students are assigned to write a 
console-based program that asks the user to enter 3 integers and 
returns the largest of the 3. The goal of this assignment is to give 
the students practice in using if-else statements. As with all 
Athene assignments, the student is given a problem description, 
along with at least 1 test case and the expected output for that test 
case.  

 

 

 

 

 

 

 

 

 

 

 

 

For each assignment, a student writes a program and submits the 
source code to the Athene system, which checks grading and 
provides feedback. The student may re-submit a program 
repeatedly until he or she has successfully written the code.  

After the student submits a source code file, the Athene system 
immediately compiles, runs, and tests the program against 
established test cases to provide a response. Figures 2 through 5 
show a series of representative submissions and their 
corresponding feedback, all from the same student session in 
attempting to solve the assignment shown in Figure 1. 

Each time a student submits an assignment, the automated system 
records the following information:  

 user id 
 filename of the submitted source code 
 time/date of the submission 
 full source code submitted 
 score 
 input and expected output for the first failed case 
 actual output of the first failed test case 

 
From the data that is stored in the submission database, we can 
later go back and analyze summary data of student behavior. 

Examining the source code of a single submission, we calculate: 

 the number of source lines of code (SLOC) 
 the state space (number of unique variables)  
 the cyclomatic (McCabe) complexity of the program 
 the 6 Halstead measures of complexity of the program 

 

We compute SLOC by counting all source lines, then deleting all 
blank lines and comment lines. We compute the McCabe 
complexity by adding the total number of branch possibilities (if, 
for, while, and case statements, adding in short-circuit analysis of 
boolean conditionals) to the total number of functions defined. 

The 6 Halstead complexity measures are: Vocabulary, Length, 
Computed Length, Volume, Difficulty, and Effort. The Halstead 
numbers are computed by counting the number of unique and 
total operators and operands and using them in the appropriate 
Halstead formulas. 

Figure 2 shows feedback given to a particular student after an 
early attempt at solving the assignment shown in Figure 1. This 
feedback is displayed almost instantaneously after the student 
submits a source code file. The top of the Athene page displays 
the student’s ID, submission time, score achieved, course in 
which he or she was enrolled, and the assignment name. The 
middle section of the feedback page displays the first expected 
output line the student’s submission failed to produce, followed 
by the actual output that the student’s submission did produce. 
The bottom section of the feedback page shows the contents of 
the student’s submitted source code file.  

If we examine the source code, we can see that the student wrote 
a program that would perform correctly for both examples given 
in the problem description shown in Figure 1. But this student 
didn’t consider different types of test cases, such as two of the 
three input numbers being the same value. So the submitted 
source file show in Figure 2 passed many of the test cases and 
was awarded a score of 64 (out of 100), but failed for the first 
time when the test input was 5 9 9. The student received the 
feedback message, “expected output: The largest 
number is 9,” and could then review to see that his or her 
actual output did not contain that statement. 

Figure 3 shows the student’s next attempt at the assignment. The 
student added some additional if statements to catch the test case 
he or she had just missed but still did not cover all possible test 
cases. [Also worth noting, the student should have corrected his or 
her existing if statements, instead of adding more of them. The 
Athene system did not provide feedback on this point.] 

Figure 4 shows the student’s third attempt at the assignment. The 
student once again added some additional if statements to catch 
the missed test case, but still did not cover all possible test cases. 
Because of the additional test cases passed, the student achieved a 
score of 88. 

Figure 5 shows the student’s fourth attempt at the assignment. To 
catch the test case in which all input numbers are the same value, 
the student added an additional if statement checking 
specifically for that case. With that addition, all test cases were 
successfully passed and the student received a score of 100, 
although the code is overly complex.  

Reviewing this assignment and the given student’s 4 submissions, 
we can see that the student eventually turned in a solution that 
produced the correct output but was not written to be efficient. 
The metrics for the source code from each of these submissions is 
shown in Table 1. Looking at metrics, specifically McCabe, can 
tell an instructor a great deal about the student’s solution. For this 
assignment, the expected McCabe value is 7. The function counts 
for 1 and each if statement counts for 2, given the possibility of 
short circuit evaluation for each. When an instructor sees a 
McCabe value of 17 for this assignment, the instructor can 
recognize that the student has not created the expected solution. 

Figure 1. Representative assignment as it appears in the 
Athene online automated system. 
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Figure 4. Representative third submission with Athene 
feedback. 

 

 

Figure 5. Representative fourth submission with Athene 
feedback. 

Figure 2. Representative first submission with Athene 
feedback. 

Figure 3. Representative second submission with 
Athene feedback.
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Table 2. Overview of data collected. 

Table 1. Source code metrics for example submissions 
 

 

4. RESULTS 
Table 2 describes the overall data that was analyzed in this paper.  

 

 
In analyzing the data, we gave extra attention to factors that 
changed when students showed positive progress. Table 3 
represents the data from only those submissions that come out of 
multiple-attempt sessions, and we always ignored the first attempt 
(as there would not be a previous submission to compare it 
against). We call these submissions “new maximums.” 32.2% of 
eligible submissions were new maximums. 

 

Also of special interest to us is the effect that throttling had on 
what students changed from submission to submission. For 
semesters 1–4, we allowed students unlimited submissions in any 
time period without throttling; for semesters 5–7, we established a 
throttle that limited students to 3 submissions per 15-minute 
period. This action corresponded with distinctions in student 
behavior and data outcomes. This data is shown in Table 4. 
 

 

 

5. DISCUSSION 
We recognize two primary areas of new knowledge emerging 
from this study. First, we see that throttling of submissions does 
indeed have an impact on the quality of student submissions. 
Table 4 shows that the average score of multiple attempt sessions 
that eventually scores 100% increased from 11 all the way to 28. 
Knowing that submissions were throttled made students more 
careful in making their first submission, hopefully putting more 
thought into their work and doing independent testing instead of 
only relying on the grading system. 

Second, dynamic testing is important, but instructors and students 
can also benefit from considering style and content. In January 
2004, Ala-Mutka published an executive study on the use of 
Style++ to promote good style practices in students. The AAT 
was able to discern and respond to a number of unhealthy 
programming practices with an appropriate grade and feedback on 
how the student should improve the efficiency of their program. 
Ala-Mutka found that “students implement more reliable and 
understandable programs” after having only been required to 
submit assignments to Style++ for a year [2]. However, Ala-
Mutka’s study focused on independent student use of the Style++ 
tool in advance of submitting final assignments, allowing 
instructors to “concentrate on giving feedback on the more 
advanced features of program design and course specific issues.”  

We argue that the examples in the session shown in Figures 2 
through 5 show us that instructors can learn a great deal more 
about student submission by employing some basic metric 
analysis of submitted code. By using these other types of analysis, 
we can identify gaps in understanding, even when a student 
finishes with a score of 100%. With a focus on style, the student 
may be more capable of thinking in terms of efficiency and 
efficacy for each line in their code, which can help prevent 
situations similar to that in Figures 2-5 wherein the student 
needlessly increased complexity and length of code rather than 
rewriting existing code to achieve the desired output. 

Overall, we can infer that both an emphasis on technique and use 
of throttling submissions encourage a reflective perspective of 
one’s work. 

 
1st Submission 

(Figure 2.) 
2nd Submission 

(Figure 3.) 
3rd Submission 

(Figure 4.) 
4th Submission 

(Figure 5.) 
SLOC 17 23 25 27 

State Space 3 3 3 3 

McCabe Complexity 7 13 15 17 

Halstead Vocabulary 28 35 37 39 

Halstead Length 95 145 162 179 

Halstead Computed Length 108.28 148.09 160.27 172.66 

Halstead Volume 456.1 743.75 843.93 946.09 

Halstead Difficulty 16.07 16.27 16.71 17.09 

Halstead Effort 7976.46 12101.37 14103.39 16167.95 

Total # of Semesters 7 

Total # of Students 290 

Total # of Submissions 45,128 

Total # of Sessions 12,452 

Percent of Sessions Completed 
Successfully 

83.2% 

Change from Last Submission New Max 

Average score increase for a new max 57 

Average SLOC increase 0.43 

Average State Space increase 0.04 

Average McCabe Increase 0.33 

Average Halstead Vocabulary increase 0.73 

Table 3. Average changes students made in achieving a 
new maximum submission. 
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6. FUTURE WORK 
In the future, we would like to more seamlessly integrate static 
analysis tools—giving students more feedback (such as reporting 
to them the actual complexity level of their submitted program 
and the expected level).  

 

 

Another interesting project would be to automatically analyze 
individual problems to identify the most common student 
problems, so instructors can address these issues more effectively 
in class. 
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  All Semesters 
No Throttling  

(Semesters 1-4) 
With Throttling  
(Semesters 5-7) 

Total students 290 170 120 

Total submissions 45,128 31,753 13,375 

Total sessions 12,452 7,949 4,503 

Average submissions per session 3.62 3.99 2.97 

Average score of first submission for sessions with multiple 
attempts that eventually scored 100% 

19 11 28 

Average score change from first to second submission 30 31 30 

Average McCabe change from first to last submission 0.69 0.81 0.58 

Average Halstead Vocabulary change from first to last submission 2.34 2.81 1.87 

Table 4. Effect of throttling on submissions. 
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