
Abilene Christian University
Digital Commons @ ACU

School of Information Technology and Computing College of Business Administration

3-2015

An Empirical Study of Iterative Improvement in
Programming Assignments
Raymond Pettit

John Homer

Roger Gee

Adam Starbuck

Susan Mengel

Follow this and additional works at: https://digitalcommons.acu.edu/info_tech_computing

This Article is brought to you for free and open access by the College of Business Administration at Digital Commons @ ACU. It has been accepted for
inclusion in School of Information Technology and Computing by an authorized administrator of Digital Commons @ ACU.

Recommended Citation
Pettit, Raymond; Homer, John; Gee, Roger; Starbuck, Adam; and Mengel, Susan, "An Empirical Study of Iterative Improvement in
Programming Assignments" (2015). School of Information Technology and Computing. 5.
https://digitalcommons.acu.edu/info_tech_computing/5

https://digitalcommons.acu.edu?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/college_business_administration?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing/5?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

An Empirical Study of Iterative Improvement
in Programming Assignments

Raymond Pettit, John Homer, Roger Gee,
and Adam Starbuck

School of Information Technology and Computing
Abilene Christian University

Abilene, TX, USA
{rsp05b, jdh08a, rpg11a, acs11e}@acu.edu

Susan Mengel
Department of Computer Science

Texas Tech University
Lubbock, TX, USA

susan.mengel@ttu.edu

ABSTRACT
As automated tools for grading programming assignments become
more widely used, it is imperative that we better understand how
students are utilizing them. Other researchers have provided
helpful data on the role automated assessment tools (AATs) have
played in the classroom. In order to investigate improved
practices in using AATs for student learning, we sought to better
understand how students iteratively modify their programs toward
a solution by analyzing more than 45,000 student submissions
over 7 semesters in an introductory (CS1) programming course.
The resulting metrics allowed us to study what steps students took
toward solutions for programming assignments. This paper
considers the incremental changes students make and the
correlating score between sequential submissions, measured by
metrics including source lines of code, cyclomatic (McCabe)
complexity, state space, and the 6 Halstead measures of
complexity of the program. We demonstrate the value of
throttling and show that generating software metrics for analysis
can serve to help instructors better guide student learning.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Information
Science Education – computer science education, information
systems education, self-assessment.

General Terms
Experimentation

Keywords
computer science education; computer aided instruction;
automated feedback; automated assessment tools

1. INTRODUCTION
One challenge facing instructors of computer programming is
identifying how students learn the material through hands-on
practice that takes place beyond the instructor’s observation, often
outside the classroom.

A better understanding of how students iteratively modify their
programs toward a solution can help us improve programming
instruction over time. Examining a final submission can
determine if a student eventually created a properly working
program but does not indicate how efficiently or systematically he
or she approached the problem.

This paper examines data collected from more than 45,000
student submissions over 7 semesters in an introductory (CS1)
programming course. Each semester, we gave students 75 C++
programming assignments, increasing in difficulty over the course
of the semester. Students submitted their work to an online
system, Athene (created in-house), which stored, compiled, and
ran each submission against a suite of specific test cases and
carefully generated random test cases. The Athene system then
automatically scored each submission, so students received
feedback immediately. Programs that did not pass the entire test
suite received either a compile error message or information about
one or more failed test cases as feedback. For failed test cases,
students received a report of their input, the expected output, and
the actual output from their program. Students had the
opportunity to modify and resubmit their program in an attempt to
improve their grade. A student session consisted of all
submissions by one student for a given problem. There was no
limit on the number of submissions that a student could attempt
until the deadline, although we experimented with “throttling,” a
technique that limited a student's attempted solutions within a
rolling 15-minute time period. This paper also considers the
effects of this throttling on submission behavior.

With this approach, we intend to encourage students to complete
each assignment, overcoming early errors to eventually reach a
final correct solution. Automated scoring is made possible by
preprocessing and other source modifications, then compiling and
linking with both standard and specialized libraries. The system
scores student submissions by direct inspection of required
features (such as functions) and validation of program output.

We look more closely at two key moments in each student session
in order to see the amount of change and meaningful progress that
takes place (1) between a student’s first and second submissions
and (2) between a student’s first and last submissions. In our
courses, 83% of student sessions reach a score of 100%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGCSE '15, March 4–7, 2015, Kansas City, MO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2966-8/15/03…$15.00
http://dx.doi.org/10.1145/2676723.2677279

410

2. RELATED WORK
Automated assessment tools (AAT) have been in use since 1960
[6]. Ala-Mutka [3], Douce [5], and Ihantola [7] all offer good
reviews of the capabilities of tools that have come into existence
since. Other relevant tools include ALOHA [1], Style++ [2], JUG
[4], BlueJ [8], Autograder [9], ClockIt [10], Fitchfork [11],
Mooshak [12], Bottlenose [13], AutoLep [14], and AutogradeMe
[15]. We provide a more specific review of selected research
below, as comparable examples of automated assessment tools
(AATs) provide important context in considering our Athene
AAT.

In June 2005, Kirsti M. Ala-Mutka surveyed a range of
assessment tools available at that time, reviewing their abilities in
dynamic testing to construct a secure running environment and
check program functionality, efficiency, and student testing skills;
and in static testing to check coding style and programming
errors, collect software metrics, and assess design [3]. In
September 2005, Christopher Douce, et al., provided a historical
overview of the development of AATs and a survey of related
research, concluding with a series of useful criteria for evaluating
such tools, including whether the system “does what it is
supposed to do,” whether “it is liked by its users,” and whether “it
helps students become more proficient at programming” [5]. In
2010, Petri Ihantola, et al., followed up with a review of AAT
development between 2006–2010, determining that the most
significant differences among programs had to do with “how tests
are defined, how resubmissions are handled, and how the security
is guaranteed” [7].

Since the publication of these surveys, several key papers have
devoted expanded attention to more recent programs. For
example, Mark Sherman, et al., looked at the web-based
Bottlenose framework and considered how students responded to
instant automated feedback in contrast to time-delayed instructor
feedback, finding that students made 50% more submissions per
assignment when using the AAT. Sherman’s article does not
discuss final submission quality with or without the AAT, but
does note the straightforward effect that with the AAT, students
continue to modify and re-submit assignments, presumably in
response to the system’s feedback—an advantage in a course
where they might otherwise submit several assignments before
receiving instructor feedback [13]. The article does not go into
detail regarding what Bottlenose assesses in providing feedback;
for examples of how such programs work, we can look at papers
including those from Manuel Rubio-Sánchez, et al. [12] and
Tiantian Wang, et al. [14].

Rubio-Sánchez’s group reviewed the widely available Mooshak
system, using both qualitative and quantitative analysis to
evaluate its effectiveness in student learning. Responding to
earlier studies that had noted a negative correlation between the
introduction of Mooshak and student drop-out rates, Rubio-
Sánchez’s group observed that those studies had not held other
variables constant—in particular, the studies had changed
teaching methodology simultaneously with introducing Mooshak.
In their study, then, Rubio-Sánchez’s group included both test and
control groups in the form of courses with near-identical syllabi
and teaching methodologies, some of which used Mooshak and
some of which did not. Qualitatively, students self-reported
appreciating instant feedback but had complaints about Mooshak
specifically, because while it is effective in assessing whether a
program has succeeded or failed, it does not provide feedback to
help students make changes along the way. The Mooshak tool
was originally created for use in programming contests and still

lacks features present in many tools designed for use in courses.
Holding other factors constant, Rubio-Sánchez’s group
did not find a statistical change in the dropout rate of courses
using Mooshak.

In contrast, Wang’s group wrote about AutoLEP, an AAT they
developed at the Harbin Institute of Technology in Heilongjiang,
China, which combines static analysis with dynamic testing to
provide students with location-specific feedback on the syntactic,
structural, and logical features in their programs. AutoLEP seems
more like Bottlenose in allowing for feedback and multiple
submissions, but with the apparent advantage of more precision
due to its simultaneous static and dynamic feedback.

The issue of whether AATs ought to allow for multiple
submissions comes up again in Vrada Pieterse’s paper on the use
of AATs—in particular, his group’s Fitchfork software—in
massive open online courses (MOOCs) that teach programming.
Pieterse argues that throttling (limiting the number of submissions
per assignment) is inappropriate in a MOOC environment in part
because the open enrollment format means students are working
voluntarily and should have the opportunity to use AATs for
repeated revisions as needed to learn the material. A correlative
argument, however, is that unlimited submissions carries a risk to
the traditional, credit-based classroom where students may be
more tempted to “game the system” in an attempt to get a desired
grade rather than to master learning the material [11]. Such a
conjecture corresponds to an observation by Ihantola’s group,
who write, “we believe that the very fact that the assessment is
automatic is likely to change how some students approach the
exercise. Knowingly submitting a weak or even incorrect solution
that gets accepted by a machine is quite likely more socially
acceptable than trying to cheat a person.” Pieterse’s paper, then,
raises the challenge to AAT developers to consider an appropriate
level of throttling for the system’s target user environment.

Overall, these articles point to a series of features relevant in
developing AATs, including secure running environments
(sandboxes), static and dynamic testing, and resubmissions and
throttling. In our Athene program, we chose to give students
feedback primarily from dynamic testing while running static
analysis later for examining its usefulness. We also implemented
a throttling rule for several semesters to see how that changed
student behavior.

3. METHODOLOGY

3.1 Population Characterization
We collected data from 290 students in a Programming I course
over seven semesters. We taught the course using the C++
programming language. Our curriculum is a late objects
curriculum and subject matter in the course is typical of a CS1
course, including input/output, basic data types, decision
structures, repetition, functions, and arrays.

The course serves primarily as a first programming course
required of Computer Science majors, but students also include
majors in Engineering, Physics, Mathematics, Information
Technology, and other related disciplines.

3.2 Description of Data Collected
Each semester, we give students 75 programming assignments for
homework, most of which are completed outside of class. The
data included in this paper comes from all 75 unique assignments.

411

The students receive their assignments through the Athene online
automated system.

Figure 1 shows a representative assignment, typically assigned in
the third week of a 15-week semester, shortly after introducing
decision structures. In this case, students are assigned to write a
console-based program that asks the user to enter 3 integers and
returns the largest of the 3. The goal of this assignment is to give
the students practice in using if-else statements. As with all
Athene assignments, the student is given a problem description,
along with at least 1 test case and the expected output for that test
case.

For each assignment, a student writes a program and submits the
source code to the Athene system, which checks grading and
provides feedback. The student may re-submit a program
repeatedly until he or she has successfully written the code.

After the student submits a source code file, the Athene system
immediately compiles, runs, and tests the program against
established test cases to provide a response. Figures 2 through 5
show a series of representative submissions and their
corresponding feedback, all from the same student session in
attempting to solve the assignment shown in Figure 1.

Each time a student submits an assignment, the automated system
records the following information:

 user id
 filename of the submitted source code
 time/date of the submission
 full source code submitted
 score
 input and expected output for the first failed case
 actual output of the first failed test case

From the data that is stored in the submission database, we can
later go back and analyze summary data of student behavior.

Examining the source code of a single submission, we calculate:

 the number of source lines of code (SLOC)
 the state space (number of unique variables)
 the cyclomatic (McCabe) complexity of the program
 the 6 Halstead measures of complexity of the program

We compute SLOC by counting all source lines, then deleting all
blank lines and comment lines. We compute the McCabe
complexity by adding the total number of branch possibilities (if,
for, while, and case statements, adding in short-circuit analysis of
boolean conditionals) to the total number of functions defined.

The 6 Halstead complexity measures are: Vocabulary, Length,
Computed Length, Volume, Difficulty, and Effort. The Halstead
numbers are computed by counting the number of unique and
total operators and operands and using them in the appropriate
Halstead formulas.

Figure 2 shows feedback given to a particular student after an
early attempt at solving the assignment shown in Figure 1. This
feedback is displayed almost instantaneously after the student
submits a source code file. The top of the Athene page displays
the student’s ID, submission time, score achieved, course in
which he or she was enrolled, and the assignment name. The
middle section of the feedback page displays the first expected
output line the student’s submission failed to produce, followed
by the actual output that the student’s submission did produce.
The bottom section of the feedback page shows the contents of
the student’s submitted source code file.

If we examine the source code, we can see that the student wrote
a program that would perform correctly for both examples given
in the problem description shown in Figure 1. But this student
didn’t consider different types of test cases, such as two of the
three input numbers being the same value. So the submitted
source file show in Figure 2 passed many of the test cases and
was awarded a score of 64 (out of 100), but failed for the first
time when the test input was 5 9 9. The student received the
feedback message, “expected output: The largest
number is 9,” and could then review to see that his or her
actual output did not contain that statement.

Figure 3 shows the student’s next attempt at the assignment. The
student added some additional if statements to catch the test case
he or she had just missed but still did not cover all possible test
cases. [Also worth noting, the student should have corrected his or
her existing if statements, instead of adding more of them. The
Athene system did not provide feedback on this point.]

Figure 4 shows the student’s third attempt at the assignment. The
student once again added some additional if statements to catch
the missed test case, but still did not cover all possible test cases.
Because of the additional test cases passed, the student achieved a
score of 88.

Figure 5 shows the student’s fourth attempt at the assignment. To
catch the test case in which all input numbers are the same value,
the student added an additional if statement checking
specifically for that case. With that addition, all test cases were
successfully passed and the student received a score of 100,
although the code is overly complex.

Reviewing this assignment and the given student’s 4 submissions,
we can see that the student eventually turned in a solution that
produced the correct output but was not written to be efficient.
The metrics for the source code from each of these submissions is
shown in Table 1. Looking at metrics, specifically McCabe, can
tell an instructor a great deal about the student’s solution. For this
assignment, the expected McCabe value is 7. The function counts
for 1 and each if statement counts for 2, given the possibility of
short circuit evaluation for each. When an instructor sees a
McCabe value of 17 for this assignment, the instructor can
recognize that the student has not created the expected solution.

Figure 1. Representative assignment as it appears in the
Athene online automated system.

412

Figure 4. Representative third submission with Athene
feedback.

Figure 5. Representative fourth submission with Athene
feedback.

Figure 2. Representative first submission with Athene
feedback.

Figure 3. Representative second submission with
Athene feedback.

413

Table 2. Overview of data collected.

Table 1. Source code metrics for example submissions

4. RESULTS
Table 2 describes the overall data that was analyzed in this paper.

In analyzing the data, we gave extra attention to factors that
changed when students showed positive progress. Table 3
represents the data from only those submissions that come out of
multiple-attempt sessions, and we always ignored the first attempt
(as there would not be a previous submission to compare it
against). We call these submissions “new maximums.” 32.2% of
eligible submissions were new maximums.

Also of special interest to us is the effect that throttling had on
what students changed from submission to submission. For
semesters 1–4, we allowed students unlimited submissions in any
time period without throttling; for semesters 5–7, we established a
throttle that limited students to 3 submissions per 15-minute
period. This action corresponded with distinctions in student
behavior and data outcomes. This data is shown in Table 4.

5. DISCUSSION
We recognize two primary areas of new knowledge emerging
from this study. First, we see that throttling of submissions does
indeed have an impact on the quality of student submissions.
Table 4 shows that the average score of multiple attempt sessions
that eventually scores 100% increased from 11 all the way to 28.
Knowing that submissions were throttled made students more
careful in making their first submission, hopefully putting more
thought into their work and doing independent testing instead of
only relying on the grading system.

Second, dynamic testing is important, but instructors and students
can also benefit from considering style and content. In January
2004, Ala-Mutka published an executive study on the use of
Style++ to promote good style practices in students. The AAT
was able to discern and respond to a number of unhealthy
programming practices with an appropriate grade and feedback on
how the student should improve the efficiency of their program.
Ala-Mutka found that “students implement more reliable and
understandable programs” after having only been required to
submit assignments to Style++ for a year [2]. However, Ala-
Mutka’s study focused on independent student use of the Style++
tool in advance of submitting final assignments, allowing
instructors to “concentrate on giving feedback on the more
advanced features of program design and course specific issues.”

We argue that the examples in the session shown in Figures 2
through 5 show us that instructors can learn a great deal more
about student submission by employing some basic metric
analysis of submitted code. By using these other types of analysis,
we can identify gaps in understanding, even when a student
finishes with a score of 100%. With a focus on style, the student
may be more capable of thinking in terms of efficiency and
efficacy for each line in their code, which can help prevent
situations similar to that in Figures 2-5 wherein the student
needlessly increased complexity and length of code rather than
rewriting existing code to achieve the desired output.

Overall, we can infer that both an emphasis on technique and use
of throttling submissions encourage a reflective perspective of
one’s work.

1st Submission

(Figure 2.)
2nd Submission

(Figure 3.)
3rd Submission

(Figure 4.)
4th Submission

(Figure 5.)
SLOC 17 23 25 27

State Space 3 3 3 3

McCabe Complexity 7 13 15 17

Halstead Vocabulary 28 35 37 39

Halstead Length 95 145 162 179

Halstead Computed Length 108.28 148.09 160.27 172.66

Halstead Volume 456.1 743.75 843.93 946.09

Halstead Difficulty 16.07 16.27 16.71 17.09

Halstead Effort 7976.46 12101.37 14103.39 16167.95

Total # of Semesters 7

Total # of Students 290

Total # of Submissions 45,128

Total # of Sessions 12,452

Percent of Sessions Completed
Successfully

83.2%

Change from Last Submission New Max

Average score increase for a new max 57

Average SLOC increase 0.43

Average State Space increase 0.04

Average McCabe Increase 0.33

Average Halstead Vocabulary increase 0.73

Table 3. Average changes students made in achieving a
new maximum submission.

414

6. FUTURE WORK
In the future, we would like to more seamlessly integrate static
analysis tools—giving students more feedback (such as reporting
to them the actual complexity level of their submitted program
and the expected level).

Another interesting project would be to automatically analyze
individual problems to identify the most common student
problems, so instructors can address these issues more effectively
in class.

7. ACKNOWLEDGMENTS
Special thanks to Heidi Nobles and Kayla Holcomb for their
editorial support in preparing this manuscript.

8. REFERENCES
[1] Ahoniemi, T., and Reinikainen, T. ALOHA - a grading tool
for semi-automatic assessment of mass programming courses. In
Proceedings of the 6th Baltic Sea Conference on Computing
education research (Baltic Sea, 2006). Koli Calling ’06. ACM,
New York, NY, 139-140.

[2] Ala-Mutka, K. M., Uimonen, T., and Järvinen, H. Supporting
students in C++ programming courses with automatic program
style assessment. Journal of Information Technology Education
3,1 (2004), 245-262.

[3] Ala-Mutka, K. M. A survey of automated assessment
approaches for programming assignments. Computer Science
Education 15,2 (2005), 83-102.

[4] Brown, C., Pastel, R., Siever, B., and Earnest, J. JUG: a JUnit
generation, time complexity analysis and reporting tool to
streamline grading. In Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer Science
Education (2012). ITiCSE ’12. ACM, New York, NY, 99-104.

[5] Douce, C. Livingstone, D., and Orwell, J. Automatic test-
based assessment of programming: A review. Journal on
Educational Resources in Computing 5,3 (September 2005),
Article 4.

[6] Hollingsworth, J. Automatic graders for programming
classes. Communications of the ACM 3,10 (October 1960), 528-
529.

[7] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O.
Review of recent systems for automatic assessment of
programming assignments. In Proceedings of the 10th Koli
Calling International Conference on Computing Education
Research (2010.) Koli Calling ’10. ACM, New York, NY, USA,
86-93.

[8] Jadud, M. C. A first look at novice compilation behaviour
using BlueJ. Computer Science Education 15,1 (2005), 25-40.

[9] Nordquist, P. Providing accurate and timely feedback by
automatically grading student programming labs. Journal of
Computer Science Coll. 23,2 (December 2007), 16-23.

[10] Norris, C., Barry, F., Fenwick, J. B., Jr., Reid, K., and
Rountree, J. ClockIt: collecting quantitative data on how
beginning software developers really work. SIGCSE Bull. 40,3
(June 2008), 37-41.

[11] Pieterse, V. Automated assessment of programming
assignments. In Proceedings of the 3rd Computer Science
Education Research Conference on Computer Science Education
Research (2013). CSERC ’13. M. van Eekelen, e. Barendsen, P.
Sloep, and G. van der Veer, Eds. Open Universiteit, Heerlen, The
Netherlands, Article 4.

[12] Rubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C., and
Velázquez-Iturbide, Á. Student perception and usage of an
automated programming assessment tool. Computers in Human
Behavior 31 (February 2014), 453-460.

[13] Sherman, M., Bassil, S., Lipman, D., Tuck, N., and Martin,
F. Impact of auto-grading on an introductory computing
course. Journal Computing Sciences in Colleges 28,6 (June
2013), 69-75.

[14] Wang, T., Su, X., Ma, P., Wang, Y., and Wang, K. Ability-
training-oriented automated assessment in introductory
programming course. Computers & Education 56,1 (January
2011), 220-226.

[15] Zimmerman, D. M., Kiniry, J. R., and Fairmichael, F.
Toward instant gradeification. In Proceedings of the 2011 24th
IEEE-CS Conference on Software Engineering Education and
Training (2011). CSEET ’11. IEEE Computer Society,
Washington, DC, 406-410.

 All Semesters
No Throttling

(Semesters 1-4)
With Throttling
(Semesters 5-7)

Total students 290 170 120

Total submissions 45,128 31,753 13,375

Total sessions 12,452 7,949 4,503

Average submissions per session 3.62 3.99 2.97

Average score of first submission for sessions with multiple
attempts that eventually scored 100%

19 11 28

Average score change from first to second submission 30 31 30

Average McCabe change from first to last submission 0.69 0.81 0.58

Average Halstead Vocabulary change from first to last submission 2.34 2.81 1.87

Table 4. Effect of throttling on submissions.

415

	Abilene Christian University
	Digital Commons @ ACU
	3-2015

	An Empirical Study of Iterative Improvement in Programming Assignments
	Raymond Pettit
	John Homer
	Roger Gee
	Adam Starbuck
	Susan Mengel
	Recommended Citation

	Microsoft Word - fp1269-pettit.doc

