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We present measurements of elliptic and triangular azimuthal anisotropy of charged particles
detected at forward rapidity 1 < |η| < 3 in Au+Au collisions at

√
sNN = 200 GeV, as a function

of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients
v2{2}, v2{4}, v2{6}, and v2{8}, and triangular flow coefficients v3{2} and v3{4}. Using the small-
variance limit, we estimate the mean and variance of the event-by-event v2 distribution from v2{2}
and v2{4}. In a complementary analysis, we also use a folding procedure to study the distributions
of v2 and v3 directly, extracting both the mean and variance. Implications for initial geometrical
fluctuations and their translation into the final state momentum distributions are discussed.

I. INTRODUCTION

Collisions of heavy nuclei at ultra-relativistic energies
are believed to create a state of matter called the strongly
coupled quark-gluon plasma, as first observed at the Rel-
ativistic Heavy Ion Collider (RHIC) [1–4]. The quark-
gluon plasma evolves hydrodynamically as a nearly per-
fect liquid as evinced by the wealth of experimental mea-
surements and theoretical predictions (or descriptions) of
the azimuthal anisotropy of the produced particles. [5].
Multi-particle correlations are generally taken as strong
evidence of hydrodynamical flow, which necessarily af-
fects most or all particles in the event [6]. This is differ-
ent from mimic correlations (generically called nonflow)
that are not related to the hydrodynamical evolution and
typically involve only a few particles.

Multi-particle correlations are also interesting because
they have different sensitivities to the underlying event-
by-event fluctuations, which can provide additional in-
sights into the initial geometry and its translation into
final state particle distributions [7, 8].

Recently, experimental and theoretical efforts have
been directed towards measuring the fluctuations di-
rectly, using event-by-event unfolding techniques. In
principle, the multi-particle correlations and unfolding
techniques provide the same information about the un-
derlying fluctuations, though in practice with different
sensitivities [9]. The techniques used at the Large Hadron
Collider (LHC) are experimentally very different and pro-
vide complementary information [10, 11].

In this manuscript we present measurements of 2-, 4-,
6-, and 8-particle correlations as well as event-by-event
measurements of the azimuthal anisotropy parameters
corresponding to elliptic v2 and triangular v3 flow. We
estimate the relationship between the mean and variance
with both techniques and discuss the implications for un-
derstanding the detailed shape of the v2 and v3 distribu-
tions. These measurements, while the first of their kind
at forward rapidity, are consistent with previous measure-
ments at midrapidity by STAR [12] and PHOBOS [13].

∗ Deceased
† PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov

II. EXPERIMENTAL SETUP

In 2014, the PHENIX experiment [14] at RHIC col-
lected nearly 2 × 1010 minimum bias (MB) events of
Au+Au collisions at a nucleon-nucleon center-of-mass en-
ergy

√
s
NN

= 200 GeV. The present analysis makes use

of a subset (≈ 109 events) of the total 2014 data sample.
The PHENIX beam-beam counters (BBC) are used for
triggering and centrality determination. The BBCs [15]
are located ± 144 cm from the nominal interaction point
and cover the full azimuth and 3.1 < |η| < 3.9 in pseu-
dorapidity. By convention, the north side is forward ra-
pidity (η > 0) and the south side is backward rapid-
ity (η < 0). Each BBC comprises an array of 64 pho-
totubes with a fused quartz Čerenkov radiator on the
front. Charged particles impinging on the radiator pro-
duce Čerenkov light which is then amplified and detected
by the phototube. The PHENIX MB trigger for the 2014
data sample of Au+Au collisions at

√
s
NN

= 200 GeV
was defined by at least two phototubes in each side of
the BBC having signal above threshold and an online z-
vertex within ± 10 cm of the nominal interaction point.
Additionally, PHENIX has a set of zero-degree calorime-
ters (ZDC) that measure spectator neutrons from each
incoming nucleus [15]. We require a minimum energy in
both ZDCs to remove beam related background present
at the highest luminosities.

The centrality definition is based on the combined sig-
nal in the north and south BBCs. The charge distri-
bution is fitted using a Monte Carlo (MC) Glauber [16]
simulation to estimate the number of participating nu-
cleons (Npart) and a negative binomial distribution to
describe the BBC signal for fixed Npart. All quantities
in the present manuscript are reported as a function of
centrality and the corresponding Npart values are shown
in Table I.

The main detector used in the analysis is the forward
silicon vertex detector (FVTX). The FVTX [17] is a sili-
con strip detector comprising two arms, north and south,
covering 1 < |η| < 3. In Au+Au collisions there is a
strong correlation between the total signal in the BBCs
and the total number of tracks in the FVTX. To remove
beam related background, we apply an additional event
selection on the correlation between the total BBC signal
and the number of tracks in the FVTX.

Each FVTX arm has four layers. In the track recon-
struction software, a minimum of three hits is required to
reconstruct a track. However, it is possible for there to
be hit sharing with the central rapidity detector (VTX),

mailto:akiba@rcf.rhic.bnl.gov
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TABLE I. Npart values for various centrality categories.

Centrality 〈Npart〉
0%–5% 350.8 ± 3.1

5%–10% 301.7 ± 4.7

10%–20% 236.1 ± 3.8

20%–30% 167.6 ± 5.5

30%–40% 115.5 ± 5.8

40%–50% 76.1 ± 5.5

50%–60% 47.0 ± 4.7

60%–70% 26.7 ± 3.6

70%–80% 13.6 ± 2.4

80%–93% 6.1 ± 1.3

so that one or two of the three required hits can be in the
VTX. We select tracks using a stricter requirement of at
least three hits in FVTX, irrespective of the number of
hits in the VTX. We further require that the track recon-
struction algorithm have a goodness of fit of χ2/d.o.f. < 5
for each track. Lastly, we require that each track has a
distance of closest approach (DCA) of less than 2 cm.
The DCA is defined as the distance between the event
vertex and the straight-line extrapolation point of the
FVTX track onto a plane which is perpendicular to the z-
axis and contains the event vertex. A 2 cm cut selects the
FVTX tracks that likely originate from the event vertex,
and is conservative in accepting the nonzero DCA tail
that stems from the uncertainty in the determination of
the vertex position and the bending of the actual track in
the experimental magnetic field. Due to the orientation
of the FVTX strips relative to the magnetic field, mo-
mentum determination is not possible using the tracks
in the FVTX alone. However, geant-4 [18] simulations
have determined that the tracking efficiency is relatively
independent of momentum for pT & 0.3 GeV/c. Figure 1
shows the pT dependence of the FVTX tracking efficiency
averaged over 1 < |η| < 3. Figure 2 shows the tracking
efficiency as a function of η in the FVTX for two different
z-vertex selections. The single particle tracking efficiency
has a maximum value of 98.6% as a function of η. When
averaging over 1 < |η| < 3, the maximum value of the
pT -dependent efficiency is 67.9%, and pT = 0.3 GeV/c
the efficiency is at 75% of its maximum value.

III. ANALYSIS METHODS

The azimuthal distribution of particles in an event can
be represented by a Fourier series [19]:

dN

dφ
∝ 1 +

∑
n

2vn cos(n(φ− ψn)), (1)

where n is the harmonic number, φ is the azimuthal
angle of some particle, ψn is the symmetry plane, and
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FIG. 1. Tracking efficiency and acceptance in the FVTX as
a function of pT . At pT = 0.3 GeV/c the efficiency is 75% of
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FIG. 2. Tracking efficiency in the FVTX as a function of η
for two different z-vertex selections.

vn = 〈cos(n(φ − ψn))〉. There are many experimen-
tal techniques for estimating the vn coefficients, some of
which we discuss in this section.

The main ingredient in the present analysis, for both
the cumulant results and the folding results, is the Q-
vector. The Q-vector is a complex number Qn = Qn,x +
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iQn,y with the components defined as

RQn = Qn,x =

N∑
i

cosnφi, (2)

IQn = Qn,y =

N∑
i

sinnφi, (3)

where φi is the azimuthal angle of some particle and N
is the number of particles in some event or subevent—a
subevent is a subset of a whole event, usually selected
based on some kinematic selection, e.g. pseudorapidity.
Because the PHENIX FVTX detector subsystem is split
into two separate arms, north (1 < η < 3) and south
(−3 < η < −1), it is natural to use tracks in the two
arms as separate subevents for some calculations. In
other calculations, all tracks from north and south will
be combined into a single event.

Additional corrections to the data are needed to ac-
count for any nonuniformity in the azimuthal accep-
tance. In the case of uniform azimuthal acceptance,
the event average of the Q-vector components is zero:
〈Qn,x〉 = 〈Qn,y〉 = 0. In the case of nonuniform ac-
ceptance, there can be a systematic bias such that this
relation does not hold. In the case of few-particle corre-
lations, i.e. 2- and 4-particle correlations, the bias can be
corrected analytically in a straightforward manner [20].
In the case of correlations with a larger number of parti-
cles, however, this becomes impractical. The total num-
ber of terms in a k-particle cumulant calculation with-
out the assumption of azimuthal uniformity is given by
the Bell sequence: 1, 2, 5, 15, 52, 203, 877, 4140, ...—that
is, the number of terms for 2- and 4-particle correlations
is a rather manageable 2 and 15, respectively; contrari-
wise, the number of terms for 6- and 8-particle corre-
lations is a rather unmanageable 203 and 4140 terms,
respectively. For that reason, the only practicable choice
is to perform calculations on corrected Q-vectors. The
present analysis makes use of Q-vector re-centering [21].
In this procedure one has the relation

Qcorrected
n = Qraw

n −Qaverage
n , (4)

where

Qaverage
n = N〈cosnφ〉+ iN〈sinnφ〉, (5)

and

〈cosnφ〉 = 〈Qn,x/N〉, (6)

〈sinnφ〉 = 〈Qn,y/N〉. (7)

In the present analysis, we perform the Q-vector re-
centering procedure for each FVTX arm separately and
as a function of NFVTX

tracks . To assess the associated system-
atic uncertainty, we perform the Q-vector re-centering as
a function of centrality instead, as a function of addi-
tional secondary variables (event vertex and operational
time period), and for combined arms instead of separate.

A. Cumulants

The cumulant method for flow analysis was first pro-
posed in Ref. [22]. In the present analysis, we use the
recursion algorithm developed in Ref. [23], which is a
generalization of the direct calculations using Q-vector
algebra first derived in Ref. [20]. We consider 2-, 4-, 6-,
and 8- particle correlations. The multi-particle correla-
tions are denoted 〈k〉 for k-particle correlations and are
estimators for the k-th moment of vn, i.e. 〈k〉 = 〈vkn〉.
In terms of the angular relationships between different
particles, they are

〈2〉 = 〈cos(n(φ1 − φ2))〉, (8)

〈4〉 = 〈cos(n(φ1 + φ2 − φ3 − φ4))〉, (9)

〈6〉 = 〈cos(n(φ1 + φ2 + φ3 − φ4 − φ5 − φ6))〉, (10)

〈8〉 = 〈cos(n(φ1 + φ2 + φ3 + φ4 − φ5 − φ6 − φ7 − φ8))〉,
(11)

where φ1,...,8 represent the azimuthal angles of different
particles in the event.

The k-particle cumulants, denoted cn{k} are con-
structed in such a way that potential contributions from
lower order correlations are removed. Because the cu-
mulants mix various terms that are of equal powers of
vn, the cumulant method vn, denoted vn{k}, is propor-
tional to the k-th root of the cumulant. The cn{k} are
constructed as follows:

cn{2} = 〈2〉, (12)

cn{4} = 〈4〉 − 2〈2〉2, (13)

cn{6} = 〈6〉 − 9〈4〉〈2〉+ 12〈2〉3, (14)

cn{8} = 〈8〉 − 16〈6〉〈2〉 − 18〈4〉2 + 144〈4〉〈2〉2 − 144〈2〉4,
(15)

and the vn{k} are

vn{2} = (cn{2})1/2, (16)

vn{4} = (−cn{4})1/4, (17)

vn{6} = (cn{6}/4)1/6, (18)

vn{8} = (−cn{8}/33)1/8. (19)

It is also possible to construct cumulants in two or
more subevents, though in the present analysis we will
only concern ourselves with two subevents. For 2-particle
correlations, rather than 〈2〉 = 〈cos(n(φ1 − φ2))〉 where
φ1 and φ2 are from the same subevent, one has instead
〈2〉a|b = 〈cos(n(φa1 − φb2))〉 where a, b denote two dif-
ferent subevents. The cumulant and vn have the same
relationship as in the single event case, i.e. vn{2}2a|b =

cn{2}a|b = 〈2〉a|b. The two-subevent 2-particle cumulant
is also known as the scalar product method [24].

Subevent cumulants for correlations with four or more
particles were first proposed in Ref. [25]. For two-
subevent 4-particle correlations, there are two possibil-
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ities:

〈4〉ab|ab = 〈cos(n(φa1 + φb2 − φa3 − φb4))〉, (20)

〈4〉aa|bb = 〈cos(n(φa1 + φa2 − φb3 − φb4))〉, (21)

where the former allows 2-particle correlations within
single subevents and the latter excludes them. The latter
is therefore less susceptible to nonflow than the former,
although both are less susceptible to nonflow than single
event 4-particle correlations. The cumulants take the
form

cn{4}ab|ab = 〈4〉ab|ab − 〈2〉a|a〈2〉b|b − 〈2〉2a|b, (22)

cn{4}aa|bb = 〈4〉aa|bb − 2〈2〉2a|b, (23)

and the vn{4} values have the same relationship to the
cumulants as in the single particle case, i.e. vn{4}ab|ab =

(−cn{4}ab|ab)1/4 and vn{4}aa|bb = (−cn{4}aa|bb)1/4.
To determine systematic uncertainties associated with

event and track selection for the cumulant analysis, we
vary the event and track selection criteria and assess the
variation on the final analysis results. The z-vertex se-
lection is modified from ± 10 cm to ± 5 cm. The track
selections are independently modified to have a goodness
of fit requirement χ2/d.o.f. < 3. These changes move
the cumulant results by an almost common multiplica-
tive value and thus we quote the systematic uncertainties
as a global scale factor uncertainty for each result.

B. Folding

Here we describe an alternative approach where one
utilizes the event-by-event Qn distribution to extract the
event-by-event vn distribution via an unfolding proce-
dure. For our analysis we attempt a procedure similar to
that used by ATLAS as described in Ref. [10].

In brief, ATLAS successfully carries out the unfold in
Pb+Pb collisions at 2.76 TeV and finds that the event-
by-event probability distribution for elliptic flow p(v2) is
reasonably described by a Bessel-Gaussian function

p(vn) =
vn
δ2vn

e
− (v2n+(vRP

n )2)

2δ2vn I0

(
vnv

RP
n

δ2vn

)
, (24)

where vRP
n and δ2vn are function parameters that are re-

lated but not equal to the mean and variance of the dis-
tribution, respectively. Because flow is a vector quantity,
it has both a magnitude and a phase. When measuring
vn one measures the modulus of the complex number,
meaning there is a reduction in the number of dimensions
from two to one. If the fluctuations in each dimension
are Gaussian, one then expects the final distribution of
values to be Bessel-Gaussian. Recently the CMS exper-
iment has carried out a similar flow unfolding and ob-
serves small deviations from the Bessel-Gaussian form,
favoring the elliptic power distribution [26].

For the unfolding, ATLAS determines the response
matrix in a data driven way. The smearing in the re-
sponse matrix is modest as Pb+Pb collisions have a high
multiplicity and the ATLAS detector has large phase
space coverage for tracks −2.5 < η < +2.5. In our case,
the multiplicity of Au+Au collisions is lower in compar-
ison with the multiplicity in Pb+Pb collisions and the
phase space coverage of the FVTX detector is signifi-
cantly smaller. Hence, the smearing as encoded in the
response matrix is significantly larger and the unfolding
is more challenging.

To estimate the response function of the detector, we
follow the procedure from ATLAS [10], which is to ex-
amine the difference between two subevents for both Qx

and Qy. We compare the Q-vector determined in the
south arm of the FVTX, Qsouth, to the Q-vector de-
termined in the north arm of the FVTX, Qnorth. Fig-
ure 3 shows an example of this procedure for the n = 2
case. Figure 3 (a) shows the 2-dimensional distribution
for the 20%–30% centrality selection; Fig 3 (b) shows
the one-dimensional projection of this onto the x-axis
(i.e. the one-dimensional distribution of Qnorth

x −Qsouth
x );

Fig 3 (c) shows the one-dimensional projection of this
onto the y-axis (i.e. the one-dimensional distribution of
Qnorth

y − Qsouth
y ). These distributions in all centrality

selections are Gaussian over four orders of magnitude,
and we characterize them via their Gaussian widths δ2SE

which are given in Table II. It is notable that these widths
are more than a factor of two larger than those quoted by
ATLAS in Pb+Pb collisions, for example δ2SE = 0.050
for Pb+Pb 20%–25% central events [10].

TABLE II. Resolution parameter δ2SE values for n = 2 and
n = 3 for various centrality categories.

Centrality δ2SE(n = 2) δ2SE(n = 3)

0%–5% 0.117 0.115

5%–10% 0.115 0.113

10%–20% 0.115 0.113

20%–30% 0.121 0.119

30%–40% 0.133 0.130

40%–50% 0.154 0.151

If there is a modest longitudinal decorrelation between
the two subevents, it will manifest as a slight increase
in the δ2SE parameter. The final vn is averaged over
that decorrelation. This effect, as in previous unfolding
analyses [10], is neglected.

We highlight that even in the case of a perfect detector
with perfect acceptance, there remains a smearing due
to the finite particle number in each event. This raises
a question regarding the meaning of a true vn that is
being unfolded back to. In a hydrodynamic description,
there is a continuous fluid from which one can calculate
a single true anisotropy vn for each event. If one then
has the fluid breakup into a finite number of particles N ,
e.g. via Cooper-Frye freeze-out, the anisotropy of those



7

(South)x(North) - QxQ
1− 0.5− 0 0.5 1

(S
ou

th
)

y
(N

or
th

) -
 Q

y
Q

1−

0.5−

0

0.5

1

0

100

200

300

400

500

600

700=200 GeVNNsPHENIX Au+Au 
n=2, 20-30% Central

(South)x(North) - QxQ
1− 0.5− 0 0.5 1

1

10

210

310

410
 = 0.12092SE,xδ

(South)
y

(North) - QyQ
1− 0.5− 0 0.5 1

1

10

210

310

410
 = 0.12002SE,yδ

(a) (b) (c)

FIG. 3. Example distribution of Qnorth − Qsouth for the n = 2 case corresponding to Au+Au collisions at
√
sNN = 200 GeV

and centrality 20–30%. (a) The two-dimensional distribution. (b) The projection onto Qx. (c) The projection onto Qy. Shown
for (b) and (c) are the extracted Gaussian widths δ2SE—the χ2/d.o.f. values of the fits are 1.02 and 1.18 for (b) and (c),
respectively.

N particles will fluctuate around the true fluid value.
However, in a parton scattering description, for example
ampt [27], the time evolution is described in terms of
a finite number of particles N . In this sense there is no
separating of a true vn from that encoded in the N parti-
cles themselves. Regardless, one can still mathematically
apply the unfolding and compare experiment and theory
as manipulated through the same algorithm.

As noted before, the one-dimensional radial projection
of a two-dimensional Gaussian is the so-called Bessel-
Gaussian function. In this case it means that the con-
ditional probability to measure a value vobsn given a true
value vn has the following Bessel-Gaussian form:

p(vobsn |vn) ∝ vobsn e−
(vobs
n )2+v2n

2δ2 I0

(
vobsn vn
δ2

)
, (25)

where δ is the smearing parameter characterizing the
response due to the finite particle number (including
from the detector efficiency and acceptance), and I0 is
a modified Bessel function of the first kind. The smear-
ing parameter δ uses the combination of the two FVTX
arms and is related to the result from the difference by
δ = δ2SE/2. We highlight that the Bessel-Gaussian in
Eqn. 25 is different from the Bessel-Gaussian in Eqn. 24,
though both arise from a similar dimensional reduction.

We have employed the iterative Bayes unfold method
as encoded in RooUnfold [28] and our own implementa-
tion of a Singular Value Decomposition (SVD) unfold
method [29, 30]. In both cases, the response matrix
is populated using Eqn. 25 using the data-determined
smearing parameters. The FVTX-determined event-by-
event Qn distributions are used as input to the unfold.
Figure 4 shows this dimensional reduction for the n = 2
and n = 3 case, respectively. Figure 4 (a) and (c) show
the two-dimensional distribution of Qn and Figure 4 (b)
and (d) show the one-dimensional distribution of |Qn| for
the 20%–30% centrality range.

The Au+Au 20%–30% centrality class is expected to
provide the best conditions, in terms of the predicted 〈v2〉
and resolution δ, to determine p(v2) via unfolding. How-
ever, because it is quite challenging to unfold the mea-
sured distribution directly, we constructed a test version
of the problem to illustrate the procedure using the SVD
method. The details of this test are given in Appendix V,
but the end result is that the unfolding procedure is in-
herently unstable and therefore fails to converge for the
resolution parameters in the present analysis.

As a result, instead of inverting the response matrix,
we can make an ansatz that the probability distribu-
tions, p(v2) and p(v3) are exactly Bessel-Gaussian in
form. Under this restrictive assumption, because the
Bessel-Gaussian form has only two parameters as shown
in Eqn. 24, we can simply evaluate a large grid of param-
eter combinations as guesses for the truth distribution
and forward fold them, i.e. passing them through the
response matrix to compare to the observed Qn distribu-
tion. We have carried out such a “forward fold” proce-
dure with over 10,000 parameter combinations. We then
determine the statistical best fit parameters and their
statistical uncertainties based on a χ2 mapping. We con-
sider only the Gaussian statistical uncertainties here, and
detail our treatment of systematic uncertainties in Sec-
tion IV B. Some advantages of this procedure are that
we explore the full χ2 space and have no sensitivity to
an unfolding prior, regularization scheme, and number of
iterations. The disadvantage of course is the ansatz that
the distribution is precisely Bessel-Gaussian.

Examples of this χ2 forward fold mapping are shown in
Figure 5. It is striking that for the v2 case in the Au+Au
20%–30% central bin, the forward folding reveals a tight
constraint on the Bessel-Gaussian parameters. In con-
trast, for the same centrality bin and v3, there is a band
of parameter combinations providing a roughly equally
good match to the experimental Q3 distribution. Shown
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FIG. 4. Example distribution of Q for the (a), (b) elliptic n = 2 case and (c), (d) triangular n = 3 case (lower). (a) and (c) show
the 2-dimensional distribution. (b) and (d) show the 1-dimensional distribution |Q|. The distribution corresponds to Au+Au
collisions at

√
sNN = 200 GeV and centrality 20–30%. Also shown in (b), (d) is the best fit for this run Bessel-Gaussian truth

distribution and the corresponding forward folded result (i.e. pushing the truth distribution through the response matrix).

in Figure 4 for v2 (upper) and v3 (lower) are the best
Bessel-Gaussian fit distributions (red) and their forward
folded results (blue). Both cases show good agreement
between the forward folded results and the measured ex-
perimental distribution. The corresponding best χ2

min

values indicate a good match. It is notable that in the v3
case, the χ2

min values are slightly worse in all cases and

significantly worse in the most peripheral selection. The
more peripheral data have a slightly larger tail at high
Q3 values which could indicate an incompatibility with
the Bessel-Gaussian ansatz.
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FIG. 5. Two dimensional color plot of χ2 − χ2
min values as a function of the two Bessel-Gaussian parameters, vRP

n and δvn for
the 20%–30% centrality bin. (a) shows the second harmonic and (b) shows the third harmonic. Only χ2 values up to χ2

min + 25
are shown.

IV. RESULTS AND DISCUSSION

Here we detail the full set of results for the elliptic
and triangular flow moments and distributions in Au+Au
collisions at

√
s
NN

= 200 GeV. We start by detailing the
cumulant results.

A. Cumulants Results

First we show in Figure 6 (a) and (b) the centrality
dependence of v2{2} and v2{4}, respectively. The sta-
tistical uncertainties are shown as vertical lines and the
systematic uncertainty is quoted as a global factor un-
certainty. (a) shows a dramatic difference for centrality
larger than 40% between the red points, obtained without
requiring a pseudorapidity gap in the particle pair, and
the magenta points, which have a pseudorapidity gap of
|∆η| > 2.0. This is due to the fact that the pseudorapid-
ity gap removes a large amount of nonflow, especially in
the peripheral collisions where nonflow is combinatorially
less suppressed relative to central collisions. Contrari-
wise, (b) shows no difference between the black points
(no pseudorapidity gap) and two different 2-subevent cu-
mulants, one where short-range pairs are allowed (blue
points) and one where they are not (red points). The
absence of any effect here indicates that the 4-particle
correlation sufficiently suppresses nonflow combinatori-
ally such that the kinematic separation of particles pro-
vides no additional benefit. Note that this is not nec-
essarily the case in smaller collision systems—subevent

cumulants have been shown to significantly reduce non-
flow in p+p/Pb collisions at the LHC [31], and are of
potential interest in p/d/3He+Au collisions at RHIC.

Figure 7 shows the centrality dependence of multi-
particle v2, with 2, 4, 6, and 8 particles. The 4-, 6-,
and 8- particles v2 values are consistent with each other,
as expected from the small-variance limit [7]. When ac-
counting for the η-dependence of v2 as measured by PHO-
BOS [32], which indicates that v2 at 1 < |η| < 3 is about
1.25 times lower than it is at |η| < 1, the 2-, 4-, and
6-particle cumulant v2 are in good agreement with the
STAR results [12].

Considering that vn{2} =
√
v2n + σ2

vn and that in the

small variance limit vn{4} ≈
√
v2n − σ2

vn [8], one can es-
timate the relative fluctuations as

σvn
〈vn〉

≈

√
(vn{2})2 − (vn{4})2
(vn{2})2 + (vn{4})2

. (26)

Figure 8 shows the centrality dependence of this cumu-
lant estimate of σv2/〈v2〉. Despite the difference in the
rapidity region where the data are measured, they are
in good agreement with STAR [12] and PHOBOS [13].
Also shown is a comparison with ampt analyzed via cu-
mulants in the same way as the experimental data. There
is good agreement between the two, indicating that the
Monte Carlo Glauber initial conditions in ampt and their
fluctuations capture the key event-by-event varying in-
gredients. We can also calculate the event-by-event vari-
ations in the initial conditions directly via Monte Carlo
Glauber. In this case we utilize the event-by-event spatial
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FIG. 6. Centrality dependence of (a) v2{2} and (b) v2{4}. (a) The red points indicate no pseudorapidity gap whereas the
magenta points indicate a pseudorapidity gap of |∆η| > 2.0. (b) The black points indicate v2{4} with no pseudorapidity gap,
the blue points indicate a two-subevent method with |∆η| > 2.0 but where some short-range pairs are allowed, and the red
points indicate a two-subevent method with |∆η| > 2.0 where no short-range pairs are allowed.
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FIG. 7. Multi-particle v2 as a function of centrality in Au+Au
collisions at

√
sNN = 200 GeV. The magenta open diamonds

indicate the v2{SP}, the blue open squares indicate v2{4},
the black open circles indicate v2{6}, and the green filled di-
amonds indicate v2{8}.

eccentricity εn distributions. If there is a linear mapping
between initial spatial eccentricity and final momentum
anisotropy (εn ∝ vn), we should expect a good match
between σεn/ 〈εn〉 and σvn/ 〈vn〉. Also show in Fig. 8 is
the Monte Carlo Glauber result via the calculation of cu-
mulants (solid blue line), as well as the direct calculation
of the variance and mean from the full εn distribution
(dashed blue line). One sees that in midcentral 10%–
50% collisions, the data and both theory curves agree
reasonably. For more central collisions, the Monte Carlo
Glauber data-style calculation shows the same trend as
the data whereas the Monte Carlo Glauber direct calcu-

lation is significantly lower. This is due to the fact that
the small-variance limit is not a valid approximation in
central collisions. In peripheral collisions, both Monte
Carlo Glauber curves under-predict the data. This has
been attributed to the nonlinear response in hydrody-
namics [33].
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FIG. 8. Cumulant method estimate of σv2/〈v2〉 as a func-
tion of centrality in Au+Au collisions at

√
sNN = 200 GeV.

The data are shown as black open squares. The same calcu-
lation as done in data is done in ampt, shown as a solid green
line. Calculations of σε2/〈ε2〉 performed in the Monte Carlo
Glauber model are shown as blue lines. The solid blue line
is the Monte Carlo Glauber calculation done using the same
estimate as the data, the dashed blue line is the direct calcu-
lation of the moments of the MC Glauber ε2 distribution.

Now we consider the v3 case. Figure 9 shows
v3{2, |∆η| > 2} as a function of centrality. The cen-
trality dependence of v3 is much smaller than that of v2,
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which is expected because triangular flow is generated
dominantly through fluctuations.
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FIG. 9. Centrality dependence of v3{2, |∆η| > 2} in Au+Au
collisions at

√
sNN = 200 GeV, shown as magenta diamonds.

The systematic uncertainty is indicated as a shaded magenta
band. Also shown as black squares are

√
〈v23〉 as determined

from the folding analysis, which is shown in the next section.

Figure 10 (a) shows the results for c3{4} as a function
of centrality. The results are always positive within the
systematic uncertainties and shows a trend towards even
larger positive values as one moves away from the most
central collisions. Since v3{4} = (−c3{4})1/4 the v3{4}
are complex-valued.

Recently positive valued c2{4} has been observed in
p+Au collisions at RHIC [34] and p+p collisions at the
LHC [31, 35] and has been interpreted as arising from
short range nonflow contributions. The use of subevents,
especially when requiring the particles in the cumulant
to be separated in rapidity, significantly reduces non-
flow contributions and yields negative values of c2{4}
where standard cumulant analysis does not [25]. In the
Au+Au analysis presented here, due to the FVTX ac-
ceptance, one includes both short range particle combi-
nations (some or all particles in a single FVTX arm) and
long-range combinations.

We explore the potential influence of such short range
nonflow contributions as well as the opposite effect from
long-range decorrelations by changing the FVTX arm re-
quirements of the particle combinations. The most ex-
treme is requiring all particles in a single arm, shown
in Figure 10 (b), and the result is an even larger posi-
tive c3{4}—i.e. in the direction expected from increased
short range nonflow and opposite to the expectation of
long-range decorrelations causing the positive c3{4}. We
can also consider combinations of two subevents, with
two particles in each FVTX arm. One case, labeled
ab|ab, has some short range correlations though fewer
than the standard, whereas the other case, labeled aa|bb,
doesn’t allow any. One sees a consistent behavior emerge:
c3{4}aa|bb < c3{4}ab|ab < c3{4} < c3{4}singlearm All of

these results go in the direction of a large nonflow influ-
ence which may be exacerbated by the very small v3 flow
signal particularly, at forward rapidity.

The STAR experiment has also measured c3{4} in
Au+Au collisions at

√
s
NN

= 200 GeV, though at midra-
pidity |η| < 1.0 [36]. Their results, also shown in Fig-
ure 10 (a), are consistent with zero and fluctuate be-
tween positive and negative c3{4} values. The differ-
ence between the STAR and PHENIX data points likely
stems from the different acceptance in pseudorapidity
(the STAR points are measured over |η| < 1 while the
PHENIX points are measured over 1 < |η| < 3 as dis-
cussed above). Differences in nonflow, event plane decor-
relations, and the relative contribution from fluctuations
as a function of pseudorapidity may all contribute to
these observations.

These results seem to indicate that the small-variance
limit is not applicable to v3 in Au+Au collisions at

√
s
NN

= 200 GeV for any centrality. Regardless, the measure-
ment of these 2- and 4-particle cumulants is insufficient
to constrain the mean and variance of the triangular flow
event-by-event distribution.

B. Folding Results

Now we turn to the results from the event-by-event for-
ward fold. As detailed in Section III B, in the v2 case the
Bessel-Gaussian parameters are well-constrained apart
from the most central events. In the v3 case, however, the
Bessel-Gaussian parameters are not well-constrained for
any centrality class. However, despite the broad range of
possible δv3 and vRP

3 values, these correspond to a rather
small range for the real mean 〈v3〉 and root-mean-square
or variance σv3 of the distributions. This means that de-
spite the lack of constraint on the parameters, the first
(v3) and second (σv3) moments of the distribution are
nevertheless well-constrained.

We can quantify 〈vn〉 and σvn by varying the Bessel-
Gaussian parameters within the one- and two- standard
deviation statistical constraints. In addition, we deter-
mine the systematic uncertainties on these quantities by
varying the z-vertex and analyzing loose and tight cuts
(as described for the cumulants analysis). An additional
systematic uncertainty on the response matrix is esti-
mated by splitting the data sample into two subsets, one
with higher extracted δ and one with lower, forward fold-
ing the two data sets separately, and then assessing the
difference.

Figure 11 (a) shows the extracted first moment 〈v2〉,
Fig. 11 (b) shows the extracted second moment σv2 , and
Fig. 11 (c) shows the relative fluctuations σv2/〈v2〉, each
as determined from the folding method and as a func-
tion of centrality. Likewise, Fig. 12 (a) shows the ex-
tracted 〈v3〉, Fig. 12 (b) shows the extracted σv3 , and
Fig. 12 (c) shows the relative fluctuations σv3/〈v3〉. The
colored bands indicate the statistical uncertainties at the
68.27% confidence level (red) and the 95.45% confidence
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FIG. 10. Centrality dependence of c3{4} for Au+Au collisions at
√
sNN = 200 GeV. (a) Calculations using both arms: c3{4}

(black circles), c3{4}ab|ab (blue diamonds), c3{4}aa|bb (red squares), and comparison to STAR [36] (black stars). (b) Comparison
of c3{4} determined using both arms (open symbols) and a single arm (closed symbols). Note that the open black circles are
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level (green) from the χ2 analysis. The thin black lines in-
dicate the systematic uncertainties. Also shown in 11 as
blue squares are results from the cumulant based calcula-
tion as discussed in the previous section. The 〈v2〉 values
are in excellent agreement for all centralities, and the
σv2 and σv2/〈v2〉 are in reasonable agreement for 10%–
50% centrality, where the small-variance limit holds. Fig-
ure 9 shows a comparison between the cumulant result
v3{2, |∆η| > 2|} and the folding analysis result

√
〈v23〉

(calculated from the results in Fig. 12). These results
are consistent within the systematic uncertainties.

We highlight that the σv2/〈v2〉 values agree well with
those determined from the cumulant method as shown
in Figure 8, except in the most central and peripheral
Au+Au events. The most central 0%–5% events are ex-
actly where the Monte Carlo Glauber results in Figure 8
indicate a breakdown in the small-variance approxima-
tion. This is a good validation of the forward folding pro-
cedure and another confirmation that the event-by-event
elliptic flow fluctuations in Au+Au collisions at

√
s
NN

=
200 GeV are dominated by initial geometry fluctuations.

Intriguingly, whereas the values of σv2/〈v2〉 vary signif-
icantly as a function of centrality, the values of σv3/〈v3〉
are almost precisely 0.52 independent of centrality. To
understand this better, we need to consider a rather pe-
culiar feature of the Bessel-Gaussian Function. Figure 13
shows the σvn/〈vn〉 of the Bessel-Gaussian as a function
of the ratio δ/vRP

n . For values of δ > vRP
n , the observed

σvn/〈vn〉 saturates at a value of about 0.52. Thus, any
Bessel-Gaussian in the large variance limit will have a
σvn/〈vn〉 of the same value.

This observation can, in fact, help shed light on the
observed discrepancy between the CMS [11] and AT-
LAS [10] data on σv3/〈v3〉. Figure 14 shows σv2/〈v2〉
and σv3/〈v3〉 as a function of centrality in Pb+Pb colli-
sions at

√
s
NN

= 2.76 TeV from CMS and ATLAS. The

CMS results are obtained using the cumulant method as-
suming the small-variance limit. In contrast the ATLAS
results are obtained via an event-by-event unfolding and
calculating the exact mean and variance of the distribu-
tion.

The σv2/〈v2〉 values are in very good agreement, which
appears to validate the small variance approximation (as
was also validated in the Au+Au at

√
s
NN

= 200 GeV
case in this analysis). In contrast, there is a large differ-
ence in the σv3/〈v3〉 between the different methods. The
ATLAS σv3

/〈v3〉 values are all very close to 0.52, ex-
actly as observed above in the present Au+Au data and
as found to be a limiting case for the Bessel-Gaussian
function. To better understand the σv3

/〈v3〉, we also
show σε3/〈ε3〉 as determined from MC Glauber calcula-
tions. The dashed red-line uses the small-variance limit
estimate with cumulants, as is done for the CMS data,
and the agreement is quite reasonable. The solid red
line is calculated from the moments of the ε3 distribu-
tion directly, and shows good agreement with the AT-
LAS data. This represents a quantitative confirmation
of the event-by-event fluctuations and the breakdown in
the small variance approximation. The v3{4} at forward
rapidity at RHIC is found to be complex-valued, which
may be the result of a very small flow v3 and significant
nonflow contributions.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented measurements of ellip-
tic and triangular flow in Au+Au collisions at 200 GeV
for charged hadrons at forward rapidity 1 < |η| < 3.
In particular, we compare flow cumulants (v2{2}, v2{4},
v2{6}, v2{8} and v3{2}, v3{4}) and the mean and vari-
ance of the v2 and v3 event-by-event distributions using
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a forward-fold procedure with a Bessel-Gaussian ansatz.
These measurements are complementary in terms of sen-
sitivity to initial state geometry fluctuations and addi-
tional fluctuations from the evolution of the medium, for
example via dissipative hydrodynamics.

In the small-variance limit, where the event-by-event
flow fluctuations are small compared to the average flow
value i.e. σvn/〈vn〉 < 1, we expect the cumulants extrac-
tion and the forward-fold results to agree. This is the
case for elliptic flow in Au+Au collisions from 10%–50%
central and both results agree with event-by-event fluc-
tuations in the initial geometry as calculated via Monte
Carlo Glauber.

In contrast, we find that the small-variance limit fails
for triangular flow for all centralities at RHIC and the
LHC. For LHC Pb+Pb results, the large-variance result
for the cumulants can be described purely via Monte
Carlo Glauber initial geometry fluctuations. However,
for RHIC Au+Au collisions the complex values of v3{4}
indicate that there may be additional nonflow influences
as well as sources of fluctuations in the translation of
initial geometry into final state momentum triangular
anisotropies. Detailed comparisons with event-by-event
hydrodynamic calculations should be elucidating to un-
derstand the nature of these fluctuations.
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à Pesquisa do Estado de São Paulo (Brazil), Natural Sci-
ence Foundation of China (People’s Republic of China),
Croatian Science Foundation and Ministry of Science
and Education (Croatia), Ministry of Education, Youth
and Sports (Czech Republic), Centre National de la

Recherche Scientifique, Commissariat à l’Énergie Atom-
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APPENDIX: TEST CASE FOR FULL UNFOLD

For this test case, the response matrix Â is shown
in Fig. 15 (a) and is identical to that for the real data
20%–30% centrality class. We then attempt to solve the

inverse problem Â ~Qtrue
2 = ~Qobs

2 , where Qobs
2 has been

obtained in the limit of infinite statistical precision, as-
suming a truth-level distribution with parameters such
that the smearing, as encoded in Â, yields a distribution
similar to that measured in data. The singular value fac-
torization Â = Û Σ̂ŴT of the matrix is obtained, where
Û and Ŵ are unitary matrices whose column vectors,
ui and wi, are the left- and right- singular vectors of Â,
respectively, and Σ̂ is a diagonal matrix, whose nonzero
entries σi are its singular values. Figure 15 (b) shows a
few selected right-singular vectors wi. Notice that some
vectors, namely those corresponding to the largest singu-
lar values, are harmonic, whereas those corresponding to
the smallest singular values are essentially noise.

Because the response matrix is singular, we use the
SVD decomposition to construct the solution of the in-
verse problem as a linear combination of all right-singular
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vectors, as follows:

~Q2 =

Dim(A)∑
i=1

ϕi

(
~uTi · ~Qobs

2

σi

)
~wi. (27)

The damping factors ϕi = σ2
i /(σ

2
i +λ2), for some λ ∈ R,

are introduced to attenuate the contribution of the noisy
singular vectors to the sum. It is important to point out
that in most implementations of SVD used in high-energy
physics, including RooUnfold, the above sum is simply
truncated to include only a subset of the harmonic sin-
gular vectors, potentially leading to loss of information.

To determine which singular vectors contribute to the
solution in a meaningful manner, it is useful to examine
the Picard plot [37] for the problem at hand, shown in

Fig. 15 (c), which displays the singular values σi of Â, as

well as the projection of ~Qobs
2 onto the singular vectors

~uTi · ~Qobs
2 , and the solution coefficients ~uTi · ~Qobs

2 /σi. No-
tice that the singular values and the Fourier coefficients
drop sharply many orders of magnitude before leveling
off, yet in such a way that their ratio is roughly con-
stant. The implication is then that all singular vectors
appear to contribute equally to the solution, which is
clearly problematic given the noisy nature of most of
them. In general, it is desirable for Fourier coefficients
to drop off faster than the singular values (to fulfill the
so-called discrete Picard condition), such that the Picard
plot will reveal the appropriate set of terms to include in
the solution, as identified by a sharp drop in the solution
coefficients.

Given that our problem does not satisfy the Pi-
card condition, we introduce the attenuation factors ϕi

in Eqn. 27. The resulting unfolded Q2 is shown in

Fig. 15 (d), along with the true Qtrue
2 , and smeared Qobs

2 .
We observe that the unfolding works well, yielding a good
description of the true distribution shape, with uncer-
tainties associated with varying the regularization pa-
rameter λ.

However, in this case the unfolding procedure consti-
tutes an ill-posed inverse problem, such that small per-
turbations in the input vector—that is, Qobs

2 —translate
to very large errors in the solution, compounded by the
fact that the Picard condition is violated. In particular,
we have verified with our test problem that the statisti-
cal fluctuations in Qobs

2 when sampling a finite number
of events, comparable to those recorded in data, indeed
limit the number of available harmonic singular vectors,
thus causing the solution to be dominated by noise.

We now examine the application of the above unfolding
method to data. Fig. 16 (a) shows an ansatz for Qtrue

2

assuming a Bessel-Gaussian form, and the corresponding
refolded smeared distribution. It compares very well to
the data, as shown in the ratio plot in Fig. 16 (b). In
principle, given the good quality of the fit, one would
expect the unfolding procedure to work with the data as
input. However, the statistical fluctuations apparent in
the ratio plot perturb the solution in such a way that the
noisy nonharmonic singular vectors are enhanced even
more than in the test problem, as shown in Fig. 16 (c).
As a result, the number of available harmonic singular
vectors is reduced, and the problem has no satisfactory
solution, even when regularization is applied. Thus, to
be explicit, the unfolding procedure fails. We note that
if we apply our test example with a significantly better
resolution, i.e. as in the ATLAS Pb+Pb case, the method
does converge as expected.
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