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We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of
positively charged hadrons in polarized p↑ þ p, p↑ þ Al, and p↑ þ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
The measurements have been performed at forward rapidity (1.4 < η < 2.4) over the range of transverse
momentum (1.8 < pT < 7.0 GeV=c) and Feynman x (0.1 < xF < 0.2). We observed positive asymmetries
for positively charged hadrons in p↑ þ p collisions, and significantly reduced asymmetries in p↑ þ A
collisions. These results reveal a nuclear dependence of TSSAs for charged-hadron production in a regime
where perturbative techniques are applicable. These results provide new opportunities to use p↑ þ A
collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use
TSSAs as a new handle in studying small-system collisions.

DOI: 10.1103/PhysRevLett.123.122001

Understanding the transverse-single-spin asymmetries
(TSSAs) that describe the azimuthal-angular dependence
of particle production relative to the transverse-spin direc-
tion of the polarized proton in the reaction p↑ þ p →
hþ X has been a long-standing puzzle. The first observa-
tions in pion production at large Feynman x (xF) [1]
showed measured TSSAs that were considerably larger
than early theoretical predictions (in the collinear leading
twist approach) [2]. Surprisingly large measured TSSAs
continued to persist in hadronic collisions at high energies
up to

ffiffiffi
s

p ¼ 500 GeV [3–14]. To explain these large
TSSAs, two approaches were proposed within perturbative
quantum chromodynamics (pQCD). One approach is called
transverse-momentum-dependent factorization, in which
TSSAs are generated by correlations between the nucleons
transverse spin direction and the transverse momentum of a
parton in the polarized nucleon (Sivers effect [15,16]), and
from the fragmentation of a transversely polarized parton
into a final-state hadron (Collins effect [17]). Another
approach, directly applicable to single-hadron production
(with pT ≫ ΛQCD) presented in this Letter is the twist-3,
collinear-factorization framework [18]. The full description
of TSSAs in p↑ þ p → hþ X in the twist-3 collinear
factorization includes twist-3 functions from the polarized
proton, the unpolarized proton, and the parton fragmenta-
tion into final-state hadrons. The twist-3 functions describe
quark-gluon-quark correlations and trigluon correlations
in the polarized proton and have been studied in detail
[19–27]. Recently, calculations of the twist-3 contribution
from parton fragmentation have been carried out and have

shown this to be an important mechanism for understand-
ing TSSA measurements [28–30].
The Relativistic Heavy Ion Collider (RHIC) is a unique

facility that can accelerate polarized protons and collide
them with other (polarized) protons or nuclei [31]. The
extension of TSSA measurements to p↑ þ A collisions not
only gives us a crucial tool for understanding the nature of
TSSAs, but also provides a new handle for studying pþ A
collisions and the parton dynamics inside nuclei, where
many emergent effects remain to be understood. These
include the so-called “Cronin” effect, an enhancement in the
inclusive hadron pT spectrum with respect to pþ p colli-
sions at moderate pT of approximately 2 < pT < 6 GeV=c
that is proposed to be due tomultiple scattering effects in the
nuclear medium and modified hadronization mechanism
[32–35]. Another exciting observation is that the collective
behavior across large pseudorapidity ranges in high multi-
plicity pþ A collisions may indicate quark-gluon-plasma
formation [36–38]. Furthermore, when hadron production is
measured in the proton-going direction, the properties of
nuclear gluons in the small-x region can be probed, where x
is the fraction of the proton’s longitudinal momentum
carried by the parton. The dynamics of gluons in the
small-x regime, where the gluon density is predicted to
increase drastically, can be described by the color-glass
condensate (CGC) formalism [39] at the saturation scaleQs,
where Q2

sA ∝ A1=3 for the target nucleus [40,41]. In recent
years, substantial attention has been given to an interplay
between small-x physics and spin physics by studying
TSSAs in transversely polarized proton and ion collisions
(p↑ þ A) and gluon saturation effects in a nucleus are taken
into account for various calculations of TSSAs in p↑ þ A
collisions [40–51]. An A dependence of TSSAs can arise
from the A dependence of Qs when the probe is at or
belowQs, while TSSAs are expected to be A independent at
higher scales [42,43,49–51]. Therefore, experimental data
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on hadronTSSAsmeasured inpþ A collisionswith varying
A size will provide valuable information testing these
models and bring new insights in understanding the dynam-
ics of the pþ A collisions.
We report here on the observation of a nuclear depend-

ence of TSSAs of positively charged-hadron production at
forward rapidity (0.1 < xF < 0.2 and 1.4 < η < 2.4, prob-
ing 0.004≲ x≲ 0.1 in the nuclei) in collisions between
transversely polarized protons and unpolarized protons or
nuclei, p↑ þ p, p↑ þ Al, p↑ þ Au at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
measured with the PHENIX detector. The positively
charged hadron is preferred in the nuclear-dependence
measurement because the significance of TSSAs for neg-
atively charged hadrons will be reduced by the partial
cancellation of the asymmetry due to opposite signs of
TSSAs for π− and K− in p↑ þ p collisions [8,10]. In this
measurement, we follow the convention to quantify TSSAs
as AN , where AN is the modulation of the azimuthal angle of
the hadron (ϕh) relative to the azimuthal angle of the
transverse spin of the proton (ϕpol), i.e., hadron-production
cross section σ ∝ 1þ AN sinðϕpol − ϕhÞ.
The data from transversely polarized p↑ þ p, p↑ þ Al,

andp↑ þ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeVwere collected
with the PHENIX detector during the RHIC 2015 running
period. Proton beams were polarized vertically with respect
to the beam direction with an average polarization of 58%
(clockwise beam) or 57% (counterclockwise beam) for
p↑ þ p, 58% for p↑ þ Al, and 61% for p↑ þ Au collisions,
with a relative uncertainty of 3% due to uncertainty in the
polarization normalization. The beams are bunched. To
minimize systematic effects due to time dependence of
machine and detector performance, the spin configuration
of the colliding bunches is alternated every 106 ns.
The PHENIX detector comprises two central arms at

midrapidity and two muon arms at forward rapidity
[52,53]; only reconstructed tracks from the muon arms
are used for this analysis. The two muon spectrometers
cover 1.2 < η < 2.4 (polarized p-going direction) and
−2.2 < η < −1.2 (A-going direction) in pseudorapidity
with full azimuthal angle coverage. Each muon arm has
7.5 nuclear interaction lengths (λI) of hadron absorber
followed by a muon tracker (MuTr), which is a set of three
stations of cathode strip chambers for momentum mea-
surements of charged particles. The MuTr determines the
momentum of a charged particle in a radial magnetic field
of

R
Bdl ¼ 0.72 Tm with a momentum resolution of

δp=p ≈ 0.05 for hadrons in the kinematic range of this
analysis. A muon identifier (MuID), located behind the
MuTr, comprises five layers of stainless-steel absorbers
(∼5λI total) and Iarocci tube planes. The MuID helps to
identify muons and hadrons based on the penetration depth
of the tracks at pz ≳ 3.5 GeV=c [54].
The beam-beam counters (BBCs) [55], at z ¼ �144 cm

from the nominal interaction point, comprise two arrays of

64 quartz Cherenkov detectors and cover the full azimuth
and the pseudorapidity range 3.1 < jηj < 3.9. The BBCs
are used to determine the collision vertex z position
(jzj < 30 cm cut was used in this analysis) as well as to
provide a minimum-bias (MB) trigger with efficiencies of
55% for pþ p, 72% for pþ Al, and 84% for pþ Au
collisions. The A-going side of the BBC is also used to
determine the event centrality based on the distribution of
the charge sum [56]. The recorded events are sampled by
the MB trigger combined with muon triggers to enrich
good muon and hadron tracks. The MuID provides a trig-
ger for events containing one or more hadron or muon
candidates. Momentum-sensitive triggering is provided
by hit information from the MuTr to enrich tracks with
pT > 3 GeV=c [57].
This analysis uses only charged tracks that stop in the

middle of the MuID planes (third or fourth plane out of five
planes) due to a hadronic interaction with the absorber
material. In the kinematic region of 0.1 < xF < 0.2, where
the longitudinal momentum of particles is larger than
10 GeV=c, positively charged hadron candidates mostly
comprise πþ and Kþ.
The particle composition in the measured charged-

hadron sample was estimated with a method developed in
Refs. [54,58], based on identified charged-hadron spectra
measured at midrapidity in pþ p and dþ Au collisions at
RHIC [35,59,60], and extrapolated to PHENIX muon arm
rapidity region of 1.2 < η < 2.4 for pþ p, pþ Al and
pþ Au collisions using PYTHIA [61] and HIJING [62] event
generators. TheKþ=πþ ratio of∼0.35, as measured at RHIC
at midrapidity at pT ∼ 2 GeV=c (typical for our data)
[35,59,60], was found approximately unchanged when
extrapolated to forward rapidity in both pþ p and pþ A
collisions. The p=πþ ratio of ∼0.25 (∼0.35) at midrapidity
in pþ p (dþ Au) collisions [35,59,60] was extrapolated to
the value of∼0.3 (∼0.5) at themuon arm rapidity, with ratios
inpþ Al andpþ Au collisions being in betweenvalues for
pþ p and dþ Au collisions. The initial charged hadron
composition is significantly modified due to particle inter-
action in the detector material, which according to Geant4-
based [63] detector simulation modifies the initial Kþ=πþ

(p=πþ) ratio by a factor of 2.7 (0.4),which varies by≈5% for
different hadron interaction models [63]. As a result, the
πþ=Kþ=p particle composition in our measured positively
charged-hadron sample is evaluated to be 45%/47%/5% in
pþ p collisions, with increased proton fraction to 7% (9%)
in pþ Al (pþ Au) collisions.
The unbinned maximum-likelihood method for ex-

tracting AN was established in a previous study [64] that
used the same detectors. Compared to binned approaches,
this method is robust even for low-statistics data. The
extended log-likelihood is defined to be

logL ¼
X
i

log½1þ PAN sinðϕpol − ϕi
hÞ� þ const; ð1Þ
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where ϕi
h is the azimuthal angle of the ith hadron

with respect to the direction of the polarized proton beam,
ϕpol is the azimuthal angle for the beam polarization
direction, which in the 2015 PHENIX run takes the values
þ= − ðπ=2Þ for ↑=↓ spin-signed beam bunches, respec-
tively, and P is the beam polarization. The asymmetry AN

is determined by maximizing logL. For p↑ þ p collisions,
both beams are polarized; therefore the values of AN were
measured separately for each beam, found to be consistent,
and were averaged in the final result. For p↑ þ A collisions,
only the clockwise proton beam was polarized. The
statistical uncertainty was calculated from the second
derivative of the log-likelihood estimator,

σ2ðANÞ ¼
�
−

∂2L
ð∂ANÞ2

�
−1
: ð2Þ

The AN calculated from the likelihood method is
compared with the following azimuthal-fitting method
based on the polarization formula [65]:

ANðϕÞ ¼
σ↑ðϕÞ − σ↓ðϕÞ
σ↑ðϕÞ þ σ↓ðϕÞ ¼

1

P
N↑ðϕÞ − RN↓ðϕÞ
N↑ðϕÞ þ RN↓ðϕÞ ; ð3Þ

where ANðϕÞ is the simple count-based transverse single-
spin asymmetry in each of the 16 azimuthal ϕ-bins, σ↑, σ↓

are cross sections for each polarization of spin up or down,
N↑, N↓ are yields, and R ¼ L↑=L↓ is the luminosity ratio
(relative luminosity) between bunches with spin up and
down, determined from the number of sampledMB triggers
corresponding to different spin orientations. From this,
AN is extracted from the fit of Eq. (3) with a function
AN sinðϕpol↑ − ϕÞ, where ϕpol↑ ¼ π=2 is the azimuthal
direction of the upward polarized bunches. Because every
detector element is simultaneously used for the measure-
ments with spin-up and -down, the possible systematic
effects from acceptance nonuniformity and acceptance
variation versus time are largely canceled. The relative
variation between this method and the log likelihood
method is included in the systematic uncertainty.
Figure 1 shows the reconstructed azimuthal modulation

of positively charged hadrons for 0.1 < xF < 0.2 and 1.8 <
pT < 7.0 GeV=c in p↑ þ p, p↑ þ Al, and p↑ þ Au colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, as calculated using Eq. (3). The
relatively larger statistical uncertainty in the bin at ϕ ∼
0.6 rad is caused by a known detector inefficiency. The
χ2=NDF of the fits are 10.1=15 for p↑ þ p, 13.5=15 for
p↑ þ Al, and 9.8=15 for p↑ þ Au. The p↑ þ p results show
a clear nonzero modulation, while the p↑ þ Al results show
a weaker modulation. In p↑ þ Au collisions, the modula-
tion is consistent with zero within the statistical uncertainty.
The finite momentum and azimuthal angle ϕ resolution

in the MuTr and the interactions of particles with the
materials prior to entering the MuTr lead to a kinematic

smearing for the AN measurement. This smearing effect
was studied and corrected with a full detector Geant4

simulation. The effect due to the ϕ smearing was found
to be negligible. The momentum smearing effect was
evaluated by resolving a set of linear equations connecting
AN for the true xF bins (Atruth

N ) and AN for the reconstructed
xF bins (Areco

N ):

Areco;m
N ¼

X
i

fi→m · Atruth;i
N ; ð4Þ

whereAreco;m
N isAN for them-th reconstructedxF bin from this

measurement and Atruth;i
N is that for the ith true xF bin. fi→m

represents the fraction of charged particles whose true xF at
the collision vertex belongs to the ith true xF bin and is
reconstructed as being in the mth xF bin. fi→m is obtained
from the Geant4 detector simulation. For calculating Atruth

N by
solving Eq. (4), the Areco

N is measured in a wider xF range
0.035 < xF < 0.3, by including two bins at lower xF and one
bin at higherxF. The resulting smearing-correctedAtruth

N of the
positively charged hadrons in bin 0.1 < xF < 0.2 are shown
in Table I. The difference between the obtained Atruth

N and the
measuredAreco

N is small compared to the statistical uncertainty
and is accounted for in the systematic uncertainty.
Table I also summarizes the systematic uncertainties for

the AN measurements. The difference of AN extracted with
two methods, Eqs. (1) and (3), is shown as δAmethod

N . The
difference between the obtained Atruth

N and measured Areco
N
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N
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FIG. 1. Azimuthal modulation of positively charged hadrons
for 1.4 < η < 2.4, 0.1 < xF < 0.2, and 1.8 < pT < 7.0 GeV=c
in (a) p↑ þ p, (b) p↑ þ Al, and (c) p↑ þ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.

TABLE I. AN and sources of systematic uncertainty for
positively charged hadrons for 1.4 < η < 2.4, 0.1 < xF < 0.2,
and 1.8 < pT < 7.0 GeV=c in p↑ þ p, p↑ þ Al, and p↑ þ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.

p↑ þ p p↑ þ Al p↑ þ Au

AN 3.14 × 10−2 1.42 × 10−2 0.12 × 10−2

δAstat
N 0.37 × 10−2 0.72 × 10−2 0.55 × 10−2

δAsyst
N

þ0.05−0.18 × 10−2 þ0.02−0.02 × 10−2 þ0.06−0.06 × 10−2

δAmethod
N

þ0.05−0.05 × 10−2 þ0.02−0.02 × 10−2 þ0.06−0.06 × 10−2

δAsmear
N

þ0.00−0.17 × 10−2 þ0.01−0.00 × 10−2 þ0.01−0.00 × 10−2
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is assigned as a conservative systematic uncertainty due to
the smearing effect, δAsmear

N . The total systematic uncer-
tainty δAsyst

N is calculated as a quadratic sum of these two
uncertainties.
Figure 2 shows AN of positively charged hadrons in

p↑ þ p, p↑ þ Al, and p↑ þ Au collisions vs A1=3 and the
average number of nucleon-nucleon collisions Navg

coll. The
Navg

coll is calculated using the Glauber model [66] for each
centrality class in p↑ þ A collisions [56]. The figure
caption and legends denote the ranges of parameters and
give the determined values of the power parameters α and
β. Panels (b) and (d) show the χ2 distributions with only
statistical uncertainties included.
The recent efforts to calculate AN in p↑ þ p and p↑ þ A

collisions, accounting for gluon saturation effects [30,
49–51] suggested that AN could be A independent or
A−1=3 dependent for the different contributions to AN in
the region where pT < Qs. However, hpTi ∼ 2.9 GeV=c in
our results is much larger than the saturation scale in the Au
nucleus (QAu

s ∼ 0.9 GeV) for the kinematics of this meas-
urement and would lead to no strong A dependence of
TSSAs under these models, as calculated in Ref. [51].
Nevertheless, the results in this Letter strongly disfavor the
A-independent scenario.
TheNavg

coll dependence of AN also suggests the decrease of
AN is related to the density of nuclear matter inside the
target nucleus which the projectile proton traverses. This
Navg

coll dependence of AN could be related to novel effects in

pþ A collisions, such as multiple scattering of partons in
the initial and/or final stages of the hard scattering, which
is also indicated in the recent results of the nuclear
modification of single hadron production and transverse
momentum broadening in dihadron correlations in pþ A
collisions [35,67,68]. Another possibility is interaction of
the parton with hot QCD matter produced in pþ A
collisions, as suggested by recent results in small systems
[36–38].
We note preliminary results from the STAR Collabora-

tion [69] of measured AN for π0 in p↑ þ p and p↑ þ Au
collisions in more forward kinematics at 2.6 < η < 4.0,
0.2 < xF < 0.7, and pT > 1.5 GeV=c that show small or
no A dependence. The dramatic difference in A-dependence
of TSSAs in different particle species and kinematic range
emphasizes the importance of further detailed studies of AN
for different particle species over wide kinematics.
To summarize, we have reported AN of positively

charged hadrons for 1.4 < η < 2.4, 0.1 < xF < 0.2, and
1.8 < pT < 7.0 GeV=c in p↑ þ p, p↑ þ Al, and p↑ þ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. For the first time, we
observed an A dependent AN in light hadron production
in pþ A collisions, with the asymmetry values dropping
from ∼3% in pþ p collisions to a value consistent with
zero in pþ Au collisions. These results may provide new
insights into the origin of AN and a unique tool to
investigate the rich phenomena behind TSSAs in hadronic
collisions and to use TSSAs as a new approach to studying
the small-system collisions.
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Pesquisa do Estado de São Paulo (Brazil), Natural
Science Foundation of China (People’s Republic of
China), Croatian Science Foundation and Ministry of
Science and Education (Croatia), Ministry of Education,
Youth and Sports (Czech Republic), Centre National de la
Recherche Scientifique, Commissariat à l’Énergie
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FIG. 2. Upper panels are AN of positively charged hadrons for
0.1 < xF < 0.2, 1.8 < pT < 7.0 GeV=c, and 1.4 < η < 2.4 in
p↑ þ p, p↑ þ Al, and p↑ þ Au collisions at
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sNN

p ¼ 200 GeV
as a function of (a) A1=3 and (c) Navg
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collÞβ are shown as solid [red] curves.
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