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The PHENIX experiment at the Relativistic Heavy Ion Collider measured π0 and η mesons at midrapidity in
U + U collisions at

√
sNN = 192 GeV in a wide transverse momentum range. Measurements were performed

in the π 0(η) → γ γ decay modes. A strong suppression of π0 and η meson production at high transverse
momentum was observed in central U + U collisions relative to binary scaled p + p results. Yields of π0 and η

mesons measured in U + U collisions show similar suppression pattern to those measured in Au + Au collisions
at

√
sNN = 200 GeV for similar numbers of participant nucleons. The η/π0 ratios do not show dependence

on centrality or transverse momentum and are consistent with previously measured values in hadron-hadron,
hadron-nucleus, nucleus-nucleus, and e+e− collisions.

DOI: 10.1103/PhysRevC.102.064905

I. INTRODUCTION

Extensive studies of heavy-ion collisions (A + A) at the
Relativistic Heavy Ion Collider (RHIC) resulted in the dis-
covery of the quark-gluon plasma (QGP) [1–4]. Subsequent
measurements at the Large Hadron Collider [5–8] confirmed
the suppression of high-pT hadrons characteristic of the QGP
and firmly established the existence of true jet quenching.
Since then, one of the main efforts of RHIC experiments was
directed towards detailed studies of the properties of the new
state of nuclear matter, in part by making more differential and
more precise measurements, but also by varying the collision
energy and system size. The culmination of the latter was
colliding U + U, the largest ever nucleus-nucleus collision
system studied so far at RHIC or the Large Hadron Collider.

Creation of the QGP causes a variety of observable effects,
including the so-called jet-quenching [9–11], which manifests
itself by strongly suppressed production of high transverse
momentum (pT ) hadrons in A + A, relative to the yields
measured in proton-proton (p + p) collisions and scaled by
the number of expected binary nucleon-nucleon collisions.
The suppression is related to the energy loss of hard-scattered
partons in a quark-gluon medium via bremsstrahlung and
elastic scatterings. Parton energy loss is characterized by the
q̂ transport parameter, which represents the squared four-

momentum transfer between the parton and the medium per
unit path length and carries information on the medium
coupling [10,12]. Values of the q̂ parameter cannot yet be esti-
mated from first principles. Instead, several phenomenological
jet-quenching models [13–17] exist, all based on experimental
results.

Quantitatively, medium effects in A + A are usually char-
acterized with the nuclear modification factor (RAA):

Rcent
AA (pT ) = 1

T cent
AA

dNcent
AA /d pT

dσpp/d pT
, (1)

where dNcent
AA /d pT is the particle yield measured in A + A

collisions for a given centrality class (cent), dσpp/pT is the
particle production cross section measured in p + p collisions
at the same collision energy while T cent

AA is the nuclear thick-
ness function for the event centrality class [18].

Measurements of the production of different types of
mesons allow a systematic study of jet quenching with respect
to the fragmentation function and quantum numbers (mass,
flavor, spin, etc.) of the final-state hadrons. For example, π0

mesons contain only the first generation quarks (u, d) and
thus are produced abundantly, while η mesons have a hidden
strangeness content and four times larger mass than π0. Mea-
surement of the η/π0 ratios in A + A gives an opportunity to
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better understand the possible changes of parton fragmenta-
tion mechanisms with respect to system size, collision energy,
and geometry. They are also an important input for the mea-
surement of direct photons.

In this paper we present results on π0 and η meson pT

invariant yields, RAA, and η/π0 ratios in U + U collisions at√
sNN = 192 GeV. The 238U + 238U is the largest collision sys-

tem at RHIC, reaching the highest energy density central colli-
sions [19]. In contrast with the nearly or completely spherical
geometries of the Cu, Au, and Pb nuclei [5–7,20–26],
238U is highly deformed. This feature makes U + U collisions
particularly interesting for jet-quenching studies. However,
when comparing physics observables in U + U with Cu + Cu,
Au + Au, or Pb + Pb collisions, one has to be aware that,
in any finite collision centrality bin, the fluctuations of the
overlap volume and energy density are larger in U + U than
in the case of spherical nuclei.

II. DATA ANALYSIS

All results presented in this paper were obtained with the
PHENIX spectrometer from data collected in the Year-2012
data taking period at RHIC. A detailed description of the
PHENIX experimental setup can be found elsewhere [27].
Event selection is performed with two beam-beam counters
(BBCs) [28] located towards the north and south beam di-
rections in the 3.0 < |η| < 3.9 pseudorapidity interval. The
collision vertex coordinate along the beam direction (zBBC)
is determined by the time difference between two hits in the
north and south BBCs with an accuracy of 0.6–2 cm (depend-
ing on the particle multiplicity). The analyzed data set was
taken with the minimum-bias (MB) trigger, which required a
north-south coincidence and an online vertex position within
±30 cm. After offline reconstruction an additional cut of
|zBBC| < 20 cm was applied; the remaining data set comprises
9.4 × 108 events.

The event centrality is derived from the distribution of the
total charge in the BBCs. For each centrality class the mean
values of the collision geometry parameters, such as the num-
ber of binary inelastic collisions (Ncoll), participating nucleons
(Npart), and TAA (the nuclear overlap integral) are determined
by using a Glauber model based Monte Carlo simulation of
BBC charge response [18]. For asymmetric 238U nuclei the
θ -dependent Woods-Saxon density distribution is used:

ρ(r, θ )/ρ0 = 1

1 + exp {[r − R′(θ )]/a} , (2)

where ρ0 is the density at the center of the nucleus, a is
the diffusion parameter, R′(θ ) = R[1 + β2Y 0

2 (θ ) + β4Y 0
4 (θ )],

and Y 0
2 (θ ) and Y 0

4 (θ ) are the Legendre polynomials. Because
there is no single universally accepted parametrization of the
U + U nucleus, we followed the example of Refs. [29,30]
and used the same two parameter sets. Accordingly, two
Monte Carlo simulations were produced incorporating differ-
ent parametrizations of R′(θ ) (see Table I) and, thus, two sets
(Glauber 1 [31] and Glauber 2 [32]) of collision-geometry pa-
rameters are used, listed in Table II. The obtained Npart values
are the same in central collisions and are slightly different
in more peripheral collisions. When comparing hadron yields

TABLE I. Parameters for the Woods-Saxon distributions used for
U + U Glauber Monte Carlo simulations.

Parameter Glauber 1 [31] Glauber 2 [32]

R (fm) 6.81 6.86
a (fm) 0.60 0.42
β2 0.280 0.265
β4 0.093 0

or RAA between U + U and Au + Au collisions at centralities
with similar Npart we have to keep in mind that the rms of the
Npart distribution is wider in U + U than in Au + Au.

Invariant yields of π0 and η mesons are obtained from

1

Nevent

d2N

2π pT d pT dy
= Nraw

2π pT Neventεrec
pT 
y
, (3)

where Nraw is the particle raw yield, εrec is the efficiency
(including acceptance and all other corrections), and Nevent is
the number of analyzed events.

The π0 and η mesons were reconstructed via the π0 →
γ γ and η → γ γ decay channels using the electromagnetic
calorimeter (EMCal) [33]. The EMCal comprises two tech-
nologically different subsystems: lead-scintillator sampling
calorimeter (PbSc) in four sectors in the west and two sectors
in the east PHENIX arms, and lead-glass Čerenkov calorime-
ter (PbGl) in two sectors in the east PHENIX arm. Each
sector covers |η| < 0.35 pseudorapidity range and 22.5 de-
grees in azimuth. The subsystems have different nonlinearity,
energy resolution (δE/E = 2.1% ⊕ 8.1%/

√
E for PbSc and

0.8% ⊕ 5.9%/
√

E for PbGl) and segmentation (δφ × δη ≈
0.01 × 0.01 for PbSc and 0.008 × 0.008 for PbGl).

Showers in the EMCal are selected as γ candidates if
they pass a shower shape cut [33] and a minimum-energy
cut (Eγ min = 0.4 GeV) to reduce contamination from mini-
mum ionizing hadrons. Then γ γ pairs are formed from all
photon candidates in the same sector under the condition

TABLE II. The mean values of 〈TAA〉 and the mean number of
participating nucleons 〈Npart〉 in different U + U centrality intervals.
The values are shown with their systematic uncertainties, estimated
by varying different input parameters and by using different nucleon
density profiles in the Monte Carlo Glauber simulations.

Glauber Centrality interval 〈TAA〉 (mb−1) 〈Npart〉
Glauber 1 [31] Minimum Bias 8.2 ± 1.6 143 ± 5

0%–20% 22.1 ± 2.3 330 ± 6
20%–40% 7.9 ± 0.8 159 ± 7
40%–60% 2.3 ± 0.3 64.8 ± 5.9
60%–80% 0.41 ± 0.09 17.8 ± 3.2
40%–80% 1.34 ± 0.20 41.3 ± 4.5

Glauber 2 [32] Minimum Bias 8.9 ± 1.0 144 ± 5
0%–20% 23.7 ± 2.7 330 ± 6

20%–40% 8.9 ± 1.1 161 ± 7
40%–60% 2.6 ± 0.4 65.8 ± 5.8
60%–80% 0.47 ± 0.10 18.2 ± 3.2
40%–80% 1.54 ± 0.22 42.0 ± 4.5
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FIG. 1. Invariant-mass distributions for γ γ pairs, obtained in 4–4.5 GeV/c pT interval in 20%–40% centrality U + U collisions. Panels
(a) and (b) show the signal and normalized mixed-event background invariant-mass distributions in PbSc and PbGl subsystems, respectively.
In label captions, 
minv stands for the invariant-mass bin width and is equal to 10 MeV/c2 for minv < 0.3 GeV/c2 and for 20 MeV/c2 at larger
minv values. Inserts (c) and (d) show the invariant-mass distributions in π0 and η regions after the mixed-event background subtraction in PbSc,
while inserts (e) and (f) show ones in PbGl.

that their energies (Eγ 1 and Eγ 2) satisfy an asymmetry cut
|Eγ 1 − Eγ 2|/(Eγ 1 + Eγ 2) < 0.8 to reduce the combinatorial
background.

To determine raw yields of π0 and η mesons the invariant-
mass (minv) distributions of γ γ pairs passing the cuts are
produced in different pT and centrality intervals, separately
for PbSc and PbGl subsystems [20]. The distributions contain
a background and two signal peaks around minv ≈ 0.14 and
0.55 GeV/c2, corresponding to π0 and η decays, respectively.
The background comprises correlated and uncorrelated com-
ponents. The correlated component comes from photons of
other particle decays (KS , ω, ρ, η′, etc.). The uncorrelated
component of the background comes from combinations of
uncorrelated γ candidates and is well reproduced by event
mixing, where γ γ pairs are formed from two γ candidates
from different events with similar collision vertex (zBBC) and
centrality. Estimated background shapes are normalized to

the real (same-event) γ γ minv distributions in the ranges
0.08 < minv < 0.085 and 0.36 < minv < 0.40 GeV/c2 for the
π0, in 0.7 < minv < 0.8 GeV/c2 for the η, and then sub-
tracted. Due to the rapid decrease of the combinatorial
background with increasing pT , the mixed-event subtraction is
implemented only for pT < 10 GeV/c. Typical γ γ invariant-
mass distributions and corresponding normalized mixed-event
background shapes are presented in Fig. 1, where panels (a)
and (b) correspond to PbSc and PbGl measurements, respec-
tively. Note that, in Fig. 1, the foreground and background
distributions plotted at minv < 0.3 GeV/c2 correspond to π0

meson measurement, while at higher minv values ones corre-
spond to η measurements, so the distributions have different
bin width in the two invariant-mass ranges.

The resulting minv distributions are fit to a combination
of a Gaussian and a polynomial to describe a signal and
the residual (correlated) background, respectively. For π0
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TABLE III. Sources of systematic uncertainties for π 0 and η yields at different pT . Values are shown for PbSc(PbGl) subsystems. The types
of uncertainties are described in the text. Values with a range indicate the variation of the uncertainty over the different centrality intervals.

Yield Source 2.75 GeV/c 13 GeV/c Type

π 0 → γ γ Acceptance 1.5%(1.5%) 1.5%(1.5%) B
pT weights 1%(1%) 1%(1%) B
Energy scale 5%(5%) 7%(7%) B
Energy resolution 2%(2%) 2%(2%) B
Photon conversion 5.2%(5.2%) 5.2%(5.2%) C
Cluster merging 7%(4%) B
PID cuts 1.6%(4%)–4%(4%) 4%(4%)–6%(4%) B
Raw yield extraction 1%(1%)–3%(2%) 2%(2%) B
Reconstruction efficiency 0.8%(1.3%)–1.3%(2.0%) 0.3%(0.4%)–0.4%(0.8%) A

η → γ γ Acceptance 1.5%(1.5%) 1.5%(1.5%) B
pT weights 1%(1%) 1%(1%) B
Energy scale 3%(3%) 6%(6%) B
Energy resolution 2%(2%) 2%(2%) B
Photon conversion 5.2%(5.2%) 5.2%(5.2%) C
PID cuts 5%(5%)–5%(7%) 5%(5%) B
Raw yield extraction 11%(11%) 8%(8%) B
Reconstruction efficiency 1.2%(2.5%)–3%(5.4%) 0.4%(0.7%)–0.9%(1.4%) A

and η measurements, respectively, first- and second-order
polynomials were used. Meson raw yields are determined as
the difference between the integrals of the bin content and the
polynomial in the mass peak regions, which are defined as
0.10 < minv < 0.17 and 0.48 < minv < 0.62 GeV/c2 for π0

and η peaks, respectively. Figures 1(c)–1(f) present examples
of the resulting minv distributions in the π0 [Figs. 1(c) and
1(e)] and η [Figs. 1(e) and 1(f)] regions obtained in PbSc
[Figs. 1(c) and 1(d)] or PbGl Figs. 1(e) and 1(f)] subsystems
as well as the corresponding fitting functions examples.

Acceptance and reconstruction efficiency (efficiency here-
after) is estimated by using a GEANT3-based [34] Monte Carlo
simulation of the PHENIX detector. The simulation is tuned
to reproduce the observed mass peaks and widths of π0 and η

mesons in the real data. To account for the effect of underly-
ing events (multiplicity) the simulated mesons are embedded
in real data in each centrality, then analyzed with the same
methods as the real data. Final efficiencies also account for
branching ratios of the meson decay modes.

Systematic uncertainties of the measurements are classi-
fied into three types. Type-A uncertainties are entirely pT

uncorrelated and are added in quadrature to the statistical
uncertainties. Type-B uncertainties are pT correlated, but dif-
ferent from point to point, and all data points can move up
or down by the same fraction of their type-B uncertainty.
Type-C uncertainties move all points up or down by the same
fraction [35].

Sources of systematic uncertainties for π0 and η yield
measurements are listed in Table III for representative pT

values. Examples of total uncertainties of different types for
the meson spectra, RAA, and ratios are listed in Table IV.

In π0 measurements, the main sources of systematic un-
certainty at low pT (1–3 GeV/c) are photon conversions in
the detector material, at intermediate pT (3–12 GeV/c) the
absolute energy calibration of the EMCal, and at high pT

(>12 GeV/c) the cluster-merging effect. The uncertainty on
the absolute scale comes from the approximately 1% residual

mismatch between π0 masses in real data and simulation. This
causes a systematic uncertainty that increases gradually from
2% at low pT , 7% at intermediate pT , and 9% at the highest
momenta. Cluster merging is due to the small opening angle
of daughter photons of the high-pT π0, so these photons are
reconstructed as a single electromagnetic cluster and the π0

is lost. The cluster merging effect starts at pT > 12 GeV/c in
PbSc and at pT > 16 GeV/c in PbGl and results in uncertainty
reaching ≈20% and ≈9% at 20 GeV/c for π0 yields, recon-
structed in PbSc and PbGl subsystems, respectively. For η

mesons, which have a four times larger mass than π0, the clus-
ter merging effect would be significant starting at 50 GeV/c,
which is far beyond the pT range of the η measurement at
PHENIX.

For η measurements, the dominant systematic uncertainty
comes from the raw yield extraction. The uncertainty is
connected to the selection of the invariant-mass distribution
analysis parameters such as the fitting range, the background
normalization, the polynomial order selection, etc. The max-
imum difference between the meson yield obtained with the
varied parameters and the one obtained with the default pa-
rameters is assigned as an uncertainty on raw yield extraction,
and it varies from 7% to 12% for the η yields depending on
pT and centrality (see Table III).

Systematic uncertainties for η/π0 ratios are calculated as
a quadratic sum of the type-B uncertainties from π0 and η

yields. Because type-C uncertainties of the π0 and η yields are
100% correlated between these particle measurements for all
pT , this uncertainty cancels in the ratios. The pT -correlated
systematic uncertainties for RAA include both uncertainties
from U + U and p + p measurements [22,36–38]. Examples
of total uncertainties of different types for the meson spectra,
RAA, and ratios are listed in Table IV.

In π0 and η measurements, the presented invariant yields
are obtained by averaging the PbSc and PbGl results. The
averaging uses weights defined by the quadratic sum of
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TABLE IV. Total uncertainties for π 0 and η meson spectra, RAA, and η/π 0 ratios at different pT . The types of uncertainties are described
in the text. Values with a range indicate the variation of the uncertainty over the different centrality intervals.

Spectra Type 2.75 GeV/c 13 GeV/c

π 0 PbSc(PbGl) spectra Stat 0.3%(0.4%)–0.5%(0.9%) 6%(8%)–20%(14%)
A 0.8%(1.3%)–1.3%(2.0%) 0.3%(0.4%)–0.4%(0.8%)
B 6%(7%)–7%(7%) 12%(10%)
C 5.2%(5.2%) 5.2%(5.2%)

π 0 Combined spectra Stat 0.2%–0.5% 5%–10%
A 0.7%–1.1% 0.2%–0.4%
B 6% 9%–10%
C 5.2% 5.2%

π 0 RAA A + stat 0.8%–1.2% 7%–11%
B 10% 14%–15%
C 15%–26% 15%–26%

η PbSc(PbGl) spectra Stat 6%(9%)–8%(14%) 22%(26%)–32%(36%)
A 1.2%(2.0%)–3.0%(5.4%) 0.4%(0.7%)–0.9%(1.4%)
B 13%(13%)–13%(14%) 11%(11%)
C 5.2%(5.2%) 5.2%(5.2%)

η Combined spectra Stat 5%–8% 16%–21%
A 1.2%–3% 0.3%–0.7%
B 9%–10% 8%–9%
C 5.2% 5.2%

η RAA A + stat 7%–10% 18%–23%
B 19% 14%

15%–26% 15%–26%
η/π 0 A + stat 5%–8% 17%–22%

B + C 10%–14% 15%

statistical and uncorrelated systematic uncertainties. Please
note that uncertainties, which are correlated between two
subsystems (like conversion), were added after the averaging.
A comparison between the PbSc(PbGl) spectra uncertainties
and the combined ones are shown in Table IV. Data points are
plotted at the bin centers rather than the bin-averaged position
to facilitate a comparison between different experiments and
data sets. To represent the true physical values at the pT of the
bin center, the data have been adjusted to correct for nonlinear
effects in bin averaging on a steeply falling spectrum [39].

III. RESULTS AND DISCUSSION

Invariant-pT spectra for π0 and η mesons in different U +
U collision centrality intervals and MB collisions are shown in
Figs. 2(a) and 2(b), respectively. At low pT the measurements
are limited by the rapidly decreasing S/B ratio, and at high pT

by the available statistics. In central U + U collisions π0 and
η yields are measured up to 16 and 14 GeV/c, respectively.
At pT > 5 GeV/c the meson spectra are fit to the power-law
function

f (pT ) = A

pn
T

, (4)

where A and n are free parameters. The estimated values of
these parameters and the χ2/NDF values are listed in Ta-
ble V for each meson species and centrality interval of U + U
collisions

The η/π0 ratios (Rη/π0 ) as a function of pT for different
U + U centrality intervals are presented in Fig. 3(a). The

comparison of η/π0 ratios obtained in U + U and Au + Au
[40] collisions is shown in Fig. 3(b). Within uncertainties the
measured Rη/π0 are independent of centrality in the whole pT

range. A constant fit to the MB data at pT > 4 GeV/c for
η/π0 results in η/π0 = 0.476 ± 0.016, and the various cen-
trality bins are consistent with this value. Similar results were
obtained in hadron-hadron, hadron-nucleus, nucleus-nucleus,
and e+e− collisions in a wide range of collision energies√

sNN = 3–2760 GeV (see, for instance, Refs. [22,41–44]).
This suggests that the QGP medium produced in U + U col-
lisions either does not affect the jet fragmentation into light
mesons (it is similar as in vacuum) or it affects the π0 and η

the same way, despite their different flavor content.
Figure 4 shows the RAA of π0 and η mesons as functions

of pT for different U + U centrality intervals. Results are
presented only for the Glauber-1 set, the use of the Glauber-2
set will not change the comparison between different meson
species. To calculate RAA one needs to use the p + p differ-
ential cross sections obtained at the same energy as the A + A
yields. RHIC does not have p + p data at

√
s = 192 GeV, thus

the meson cross sections at this energy are estimated assuming
their power-law dependence on

√
s, using results at available√

s values, as done for charged particles at
√

s = 5.02 TeV in
ALICE [45]. For π0 measurement the interpolation is carried
out from the p + p data at

√
s = 62.4, 200, and 510 GeV.

Table VI shows the results of the recalculation.
For η measurements there are no p + p data available at√

s = 62.4 and 510 GeV, thus the cross sections for these
mesons are recalculated from ones at

√
s = 200 GeV [22]

using the ratio between the π0 cross sections at
√

s = 192
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FIG. 2. (a) π 0 and (b) η invariant pT -spectra measured in different centrality intervals of U + U collisions at
√

sNN = 192 GeV. The dashed
curves are fit with a power-law function. Error bars represent a quadratic sum of statistical and type-A systematic uncertainties. Error boxes
represent a quadratic sum of type-B and type-C systematic uncertainties. Panels (c) and (d) shows data-to-fit ratios, the markers, error bars,
and error boxes are, respectively, the same as for panels (a) and (b).

and 200 GeV. The obtained π0 and η meson RAA are con-
sistent within uncertainties in the whole pT range for every
analyzed centrality interval of U + U collisions. At pT > 5
GeV/c RAA is ≈0.2–0.3 in the most central collisions. A weak
pT dependence of the measured RAA values can be observed.
The suppression of π0 and η mesons decreases as one moves
to more peripheral collisions.

Figure 5 compares RAA of π0 mesons measured as a func-
tion of pT in

√
sNN = 192 GeV U + U for two Glauber sets

and
√

sNN = 200 GeV Au + Au [23] collisions, plotted for
similar Npart values. It follows from the Ncoll values listed in
Table I that in peripheral collisions the central values of RAA

are slightly different for the Glauber-1 and Glauber-2 models,
however, the difference is within experimental uncertainties.
The observed π0 RAA is the same for U + U and Au + Au
collisions within uncertainties, which suggests that the π0

suppression mostly depends on the energy density and size
of the produced medium. Note that while the mean Npart is

TABLE V. Parameters for the π 0 and η meson invariant transverse momentum spectra fits in U + U collisions at
√

sNN = 192 GeV. Only
statistical uncertainties are shown.

Meson pT limit Centrality interval A n χ 2/NDF

π 0 → γ γ pT > 5 GeV/c MB 23.2 ± 1.1 8.02 ± 0.03 20.2/12
0%–20% 44 ± 3 7.96 ± 0.04 20.6/11

20%–40% 38 ± 3 8.16 ± 0.04 5.37/11
40%–60% 13.5 ± 1.8 8.06 ± 0.07 1.90/6
60%–80% 3.7 ± 1.0 8.15 ± 0.15 3.82/5

η → γ γ pT > 5 GeV/c MB 8.1 ± 2.6 7.83 ± 0.16 8.19/5
0%–20% 10 ± 6 7.53 ± 0.27 3.65/5

20%–40% 19 ± 10 8.11 ± 0.26 2.89/4
40%–60% 2.8 ± 2.4 7.5 ± 0.5 0.41/1
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FIG. 3. Panel (a) shows ratios of η and π 0 yields measured as a function of pT in different centrality intervals of U + U collisions at√
sNN = 192 GeV. Panel (b) compares η and π 0 yield ratios measured as a function of pT in MB U + U collisions at

√
sNN = 192 GeV and

Au + Au collisions at
√

sNN = 200 GeV [40]. Error bars represent a quadratic sum of statistical and type-A systematic uncertainties for π0

and η yields. Error boxes represent a quadratic sum of type-B systematic uncertainties from π0 and η yields.

similar for 40%–60% U + U and 40%–50% Au + Au, its rms
is 23.2 for U + U while only 13.1 for Au + Au.

Figure 6 shows the π0 and η integrated RAA as a func-
tion of Npart for U + U compared with Au + Au. Figure 6(b)
compares π0 integrated RAA as an Npart function between
Au + Au and two Glauber sets of U + U. The integration is
carried out for pT > 5 GeV/c. Values of obtained integrated
RAA are shown in Table VII for different meson species and
for Glauber-1 set. The results obtained for the two different
collision systems are on a universal trend as a function of
Npart. The dominant factor in this observable is the size of the

overlap volume (Npart), while the much larger fluctuations in
U + U because of its shape are secondary.

IV. SUMMARY

PHENIX has measured π0 and η invariant pT spectra and
RAA in the heaviest collision system available at RHIC, U + U
at

√
sNN = 192 GeV in a wide-pT range (1 < pT < 18 and

2 < pT < 14, respectively) and for several centrality inter-
vals. In the more central collisions the spectra are similar to
those observed in Au + Au at similar Npart (the powers n in

FIG. 4. RAA of π 0 and η mesons measured as a function of pT in different centrality intervals of U + U collisions at
√

sNN = 192 GeV.
Error bars represent a quadratic sum of statistical and type-A systematic uncertainties from U + U and p + p measurements, respectively.
Error boxes represent type-B systematic uncertainties from U + U and p + p measurements. Solid and open boxes at unity represent type-C
systematic uncertainties from U + U (including uncertainties from the TAA values) and p + p, respectively.
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TABLE VI. Production cross section of π 0 and η mesons in p + p collisions, recalculated at
√

s = 192 GeV.

Meson pT Ed3σ/d3 p Stat + Type-A Type-B Type-C
decay (GeV/c) (mb GeV−2 c3) uncertainty uncertainty uncertainty

π 0 → γ γ 1.25 3.85 × 10−1 2.8 × 10−4 3.76 × 10−2 3.74 × 10−2

1.75 5.97 × 10−2 7 × 10−5 4.92 × 10−3 5.79 × 10−3

2.25 1.25 × 10−2 2.5 × 10−5 1.03 × 10−3 1.22 × 10−3

2.75 3.16 × 10−3 1.0 × 10−5 2.61 × 10−4 3.06 × 10−4

3.25 9.35 × 10−4 5 × 10−6 7.8 × 10−5 9.1 × 10−5

3.75 3.12 × 10−4 2.5 × 10−6 2.65 × 10−5 3.02 × 10−5

4.25 1.12 × 10−4 2.4 × 10−7 1.03 × 10−5 1.09 × 10−5

4.75 4.60 × 10−5 1.4 × 10−7 4.24 × 10−6 4.46 × 10−6

5.25 2.02 × 10−5 8 × 10−8 1.88 × 10−6 1.96 × 10−6

5.75 9.73 × 10−6 6 × 10−8 9.1 × 10−7 9.4 × 10−7

6.25 4.83 × 10−6 3.5 × 10−8 4.52 × 10−7 4.68 × 10−7

6.75 2.55 × 10−6 2.5 × 10−8 2.40 × 10−7 2.47 × 10−7

7.25 1.44 × 10−6 1.8 × 10−8 1.37 × 10−7 1.40 × 10−7

7.75 8.43 × 10−7 1.3 × 10−8 8.0 × 10−8 8.2 × 10−8

8.25 5.02 × 10−7 1.0 × 10−8 4.8 × 10−8 4.9 × 10−8

8.75 3.19 × 10−7 7 × 10−9 3.1 × 10−8 3.1 × 10−8

9.25 1.96 × 10−7 6 × 10−9 1.9 × 10−8 1.9 × 10−8

9.75 1.21 × 10−7 4 × 10−9 1.2 × 10−8 1.2 × 10−8

11 5.41 × 10−8 1.4 × 10−9 5.5 × 10−9 5.2 × 10−9

13 1.35 × 10−8 6 × 10−10 1.5 × 10−9 1.3 × 10−9

15 3.31 × 10−9 2.8 × 10−10 4.0 × 10−10 3.2 × 10−10

17 1.11 × 10−9 1.5 × 10−10 1.5 × 10−10 1.1 × 10−10

19 4.8 × 10−10 1.1 × 10−10 8 × 10−11 5 × 10−11

η → γ γ 2.25 3.98 × 10−3 2.2 × 10−4 9.2 × 10−4 3.9 × 10−4

2.75 1.28 × 10−3 7 × 10−5 2.1 × 10−4 1.2 × 10−4

3.25 3.96 × 10−4 1.7 × 10−6 4.41 × 10−5 3.84 × 10−5

3.75 1.33 × 10−4 8 × 10−7 1.50 × 10−5 1.29 × 10−5

4.25 4.99 × 10−5 3.8 × 10−7 5.73 × 10−6 4.84 × 10−6

4.75 2.14 × 10−5 2.1 × 10−7 2.47 × 10−6 2.08 × 10−6

5.5 6.80 × 10−6 5 × 10−8 7.0 × 10−7 6.6 × 10−7

6.5 1.76 × 10−6 2.2 × 10−8 1.84 × 10−7 1.71 × 10−7

7.5 5.37 × 10−7 1.1 × 10−8 5.6 × 10−8 5.2 × 10−8

8.5 1.96 × 10−7 6 × 10−9 2.1 × 10−8 1.9 × 10−8

9.5 7.42 × 10−8 3.2 × 10−9 7.8 × 10−9 7.2 × 10−9

11 2.52 × 10−8 1.1 × 10−9 2.7 × 10−9 2.4 × 10−9

13 5.32 × 10−9 4.4 × 10−10 5.7 × 10−10 5.2 × 10−10

15 1.66 × 10−9 2.4 × 10−10 1.8 × 10−10 1.6 × 10−10

17 5.5 × 10−10 1.2 × 10−10 6 × 10−11 5 × 10−11

TABLE VII. Integrated RAA for π 0 and η mesons as a function of Npart in U + U collisions at
√

sNN = 192 GeV, calculated for Glauber 1.

Stat + Type-A Type-B + Type-C
Meson pT limit Npart 〈RAA〉 uncertainty uncertainty

π 0 → γ γ pT > 5 GeV/c 17.8 0.61 0.011 0.18
64.8 0.48 0.005 0.10

159 0.33 0.0030 0.063
330 0.19 0.0016 0.037

η → γ γ pT > 5 GeV/c 17.8 0.66 0.06 0.19
64.8 0.52 0.030 0.12

159 0.35 0.019 0.07
320 0.22 0.015 0.04
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FIG. 5. Comparison at comparable Npart of π 0 RAA measured in
U + U (two Glauber sets) at

√
sNN = 192 GeV and in Au + Au

collisions at
√

sNN = 200 GeV [23]. Error bars represent a quadratic
sum of statistical and type-A systematic uncertainties from U + U
and p + p measurements. Open boxes are type-B systematic uncer-
tainties for U + U and p + p collisions. The three boxes at unity
are type-C systematic uncertainties from p + p and nucleus-nucleus
collisions. The boxes from left to right correspond to Au + Au and
U + U measurements, respectively. Note that while the mean Npart is
similar for 40%–60% U + U and 40%–50% Au + Au, its rms is 23.2
for U + U while only 13.1 for Au + Au.

U + U are consistent within fitting errors with the respective
fitted powers to Au + Au in Ref. [23]). The values of η/π0

are independent of collision centrality and pT and consis-
tent with the previously measured values in hadron-hadron,
hadron-nucleus, nucleus-nucleus, as well as e+e− collisions at√

sNN = 3–2760 GeV, suggesting that either the fragmentation
of jets into π0 and η is unchanged, irrespective of the absence
or presence of the medium, or it changes the same way, despite
the different flavor content. The values of RAA for π0 and η

are consistent within uncertainties in all analyzed centrality
intervals of U + U collisions. The suppression pattern of π0 in
U + U collisions is consistent with Au + Au collisions at the
similar interaction energy and similar values of Npart, except
for Npart < 100 and pT < 4 GeV/c (see Fig. 5).
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