Document Type


Publication Date

Summer 7-19-2023


Molten salt is an effective coolant for a wide range of applications, including nuclear reactors, concentrated solar power, and other high temperature industrial heat transfer processes. The technical readiness level of components and instrumentation for high-temperature molten salt applications needs improvement for molten salt to be more widely adopted. A molten salt test loop was designed, built, and commissioned as a test bed to address these issues. The molten salt test loop at Abilene Christian University was built out of 316 stainless steel with a forced flow centrifugal-type pump, and was instrumented for remote operation. A low-temperature molten nitrate salt was used in this system, which was designed to operate at temperatures up to 300 ◦C and flow rates up to 90 liters per minute.

This paper describes the loop design, computational fluid dynamics modeling, construction, and commissioning details. An outline of the data acquisition and control systems is presented. Salt samples were taken before and after introduction into the loop, and melting points were measured both before and after salt circulation. Performance of the system is discussed as well as improvements required for higher temperature loops envisioned for the future.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.